sign in

Username Password

Forget Password ? ? Click Here

Don't Have An Account ? Create One

sign up

name Username Email Mobile Password

To contact us, you can contact us via the following mobile numbers by calling and WhatsApp


+989115682731 Connect To WhatsApp
+989917784643 Connect To WhatsApp
EnglishEnglish SpanishSpanish PortuguesePortuguese FrenchFrench GermanGerman ChineseChinese

Unlimited Access

For Registered Users

Secure Payment

100% Secure Payment

Easy Returns

10 Days Returns

24/7 Support

Call Us Anytime

Ashrae Handbook - 1997 Fundamentals 1997 book

Ashrae Handbook - 1997 Fundamentals

Details Of The Book

Ashrae Handbook - 1997 Fundamentals

edition: Revised 
Authors:   
serie:  
ISBN : 9781883413446, 1883413443 
publisher: American Society of Heating Refrigerating and 
publish year: 1997 
pages: 851 
language: English 
ebook format : PDF (It will be converted to PDF, EPUB OR AZW3 if requested by the user) 
file size: 43 MB 

price : $10.95 15 With 27% OFF



Your Rating For This Book (Minimum 1 And Maximum 5):

User Ratings For This Book:       


You can Download Ashrae Handbook - 1997 Fundamentals Book After Make Payment, According to the customer's request, this book can be converted into PDF, EPUB, AZW3 and DJVU formats.


Abstract Of The Book



Table Of Contents

Cover......Page 1
Preface......Page 2
Transient Energy......Page 3
Second Law of Thermodynamics......Page 4
Equations of State......Page 5
Calculating Thermodynamic Properties......Page 6
Fig. 2 Mixture of i and j Components in Constant Pressure Container......Page 7
Fig. 5 Carnot Refrigeration Cycle......Page 8
Fig. 7 Carnot Vapor Compression Cycle......Page 9
Fig. 9 Schematic p-h Diagram for Example 2......Page 10
Fig. 11 Processes of Lorenz Refrigeration Cycle......Page 11
Multistage Vapor Compression Refrigeration Cycles......Page 12
Fig. 13 Schematic and Pressure-Enthalpy Diagram for Dual-Compression, Dual-Expansion Cycle of Ex.........Page 13
Actual Refrigeration Systems......Page 14
Fig. 15 Pressure-Enthalpy Diagram of Actual System and Theoretical Single-Stage System Operating.........Page 15
Fig. 17 Single-Effect Lithium Bromide/Water Absorption Cycle......Page 16
Characteristics of RefrigerantAbsorbent Pairs......Page 17
Table 6 State Point Data for Single-Effect Lithium Bromide/Water Cycle of Figure 17......Page 18
Fig. 20 Double-Effect Lithium Bromide/Water Absorption Cycle with State Points......Page 19
Fig. 21 Single-Effect Ammonia/Water Absorption Cycle......Page 20
Nomenclature......Page 21
Bibliography......Page 22
Basic Relations of Fluid Dynamics......Page 23
Bernoulli Equation and Pressure Variation along Flow......Page 24
Wall Friction......Page 25
Flow Patterns with Separation......Page 26
Cavitation......Page 27
Nonisothermal Effects......Page 28
Compressibility......Page 29
Conduit Friction......Page 30
Fig. 13 Relation Between Friction Factor and Reynolds Number......Page 31
Section Change Effects and Losses......Page 32
Fig. 15 Effect of Duct Length on Damper Action......Page 33
Fig. 17 Differential Pressure Flowmeters......Page 34
Unsteady Flow......Page 35
References......Page 36
Steady-State Conduction......Page 37
Local Overall Heat Transfer Coefficient— Resistance Method......Page 38
Mean Temperature Difference......Page 39
Transient Heat Flow......Page 40
Temperature Distribution in Finite Objects......Page 41
Blackbody Radiation......Page 42
Fig. 5 Finite Cylinder of Intersection from Intersection of Infinite Cylinder and Infinite Slab......Page 43
Actual Radiation......Page 44
Calculation of Radiant Exchange Between Surfaces Separated by Nonabsorbing Media......Page 45
Fig. 6 Radiation Angle Factor for Various Geometries......Page 46
Natural Convection......Page 47
Forced Convection......Page 48
Techniques to Augment Forced-Convection Heat Transfer......Page 49
Fig. 12 Typical Tube-Side Enhancements......Page 51
Table 7 Equation for Augmented Forced Convection......Page 52
Extended Surface......Page 53
Fig. 17 Efficiency of Annular Fins with Constant Metal Area for Heat Flow......Page 54
Fig. 19 Efficiency of Four Types of Spine......Page 55
Fig. 22 Variation of Fin Resistance Number with Efficiency for Annular and Rectangular Fins (Gar.........Page 56
Finned-Tube Heat Transfer......Page 57
Symbols......Page 58
Fins......Page 59
Heat Transfer, General......Page 60
Fig. 1 Characteristic Pool Boiling Curve......Page 61
Fig. 2 Effect of Surface Roughness on Temperature in Pool Boiling of Pentane......Page 62
Table 1 Equations for Boiling Heat Transfer......Page 63
Fig. 4 Heat Transfer Coefficient for Pool Boiling from Horizontal Cylinder......Page 64
Forced-Convection Evaporation in Tubes......Page 65
Fig. 9 Heat Transfer Coefficient Versus Vapor Fraction for Partial Evaporation......Page 66
Condensing......Page 68
Fig. 12 Film-Type Condensation......Page 70
Condensation on Outside Surface of Vertical Tubes......Page 69
Fig. 14 Origin of Noncondensable Resistance......Page 71
Fig. 15 Qualitative Pressure Drop Characteristics of Two-Phase Flow Regime......Page 72
Symbols......Page 74
References......Page 75
Fick’s Law for Mass Diffusion Through Solids or Stagnant Fluids......Page 77
Table 1 Mass Diffusivities for Gases in Aira......Page 78
Fig. 1 Diffusion of Water Vapor Through Stagnant Air......Page 79
Molecular Diffusion in Liquids and Solids......Page 80
Fig. 4 Nomenclature for Convective Mass Transfer from Internal Surface Impermeable to Gas A......Page 81
Fig. 5 Water-Saturated Flat Plate in Flowing Airstream......Page 82
Fig. 6 Turbulent Diffusion Boundary Layer on Flat Surface......Page 83
Analogy Relations for Convective Mass Transfer......Page 84
Fig. 10 Mass Transfer from Single Spheres......Page 85
Fig. 11 Sensible Heat Transfer j-Factors for Parallel Plate Exchanger......Page 86
Enthalpy Potential......Page 87
Fig. 12 Air Washer Spray Chamber......Page 88
Air Washers......Page 89
Cooling Towers......Page 90
Symbols......Page 91
Bibliography......Page 92
Table 1 Standard Atmospheric Data for Altitudes to 10000 m......Page 93
Thermodynamic Properties of Water at Saturation......Page 94
Perfect Gas Relationships for Dry and Moist Air......Page 100
Thermodynamic Wet-Bulb Temperature and Dew-Point Temperature......Page 101
Psychrometric Charts......Page 102
Fig. 1 ASHRAE Psychrometric Chart No. 1......Page 103
Fig. 2 Schematic of Device for Heating Moist Air......Page 104
Fig. 6 Adiabatic Mixing of Two Moist Airstreams......Page 105
Fig. 9 Schematic Solution for Example 5......Page 106
Transport Properties of Moist Air......Page 107
Symbols......Page 108
References......Page 109
Noise......Page 110
Sound Pressure and Sound Pressure Level......Page 111
Predicting Human Response to Noise......Page 112
Establishing Design Goals......Page 113
Room Criterion Curves......Page 114
Fig. 7 Equal Loudness Contours for Relatively Narrow Bands of Random Noise......Page 115
Sound Measurement Basics......Page 116
Free-Field Method......Page 117
Converting Sound Power to Sound Pressure......Page 118
Terminology......Page 119
Attenuation of Noise in Ducts and Plenums......Page 120
Fig. 11 Natural Frequency of Vibration Isolators......Page 121
Fig. 15 Two Degree of Freedom System......Page 122
References......Page 123
Bibliography......Page 124
Human Thermoregulation......Page 125
Thermal Exchanges with the Environment......Page 126
Evaporative Heat Loss from Skin......Page 127
Alternative Formulations......Page 128
Table 3 Skin Heat Loss Equations......Page 129
Table 4 Typical Metabolic Heat Generation for Various Activities......Page 130
Heat Transfer Coefficients......Page 131
Clothing Insulation and Moisture Permeability......Page 132
Table 8 Garment Insulation Values......Page 133
Environmental Parameters......Page 134
Fig. 3C Analytical Formulae for Calculating Angle Factor for Small Plane Element......Page 135
Fig. 4 ASHRAE Summer and Winter Comfort Zones......Page 136
Fig. 6 Percentage of People Dissatisfied as Function of Mean Air Velocity......Page 137
Warm or Cold Floors......Page 138
Prediction of Thermal Comfort......Page 139
Fig. 11 Air Temperatures and Mean Radiant Temperatures Necessary for Comfort (PMV = 0) of Sedent.........Page 140
Two Node Model......Page 141
Fig. 14 Effect of Thermal Environment on Discomfort......Page 142
Heat Stress Index......Page 143
Wet-Globe Temperature......Page 144
Infrared Heating......Page 145
Fig. 19 Thermal Inertias of Excised, Bloodless, and Normal Living Skin......Page 146
Hot and Humid Environments......Page 147
Extreme Cold Environments......Page 148
Fig. 21 Acclimatization to Heat Resulting from Daily Exposure of Five Subjects to Room Maintaine.........Page 149
References......Page 150
Epidemiology and Biostatistics......Page 153
Measurement......Page 154
Molecular Biology......Page 155
Hazard Evaluation......Page 156
Health Effects......Page 157
Sampling......Page 158
Dusts......Page 159
Combustion Nuclei......Page 160
Table 7 Example Sample Contaminant Target List......Page 161
Health Effects......Page 162
Exposure and Exposure Sources......Page 163
Table 8 Inorganic Gas Comparative Criteria......Page 164
Exposure Control Strategies......Page 165
Fig. 1 Related Human Sensory, Physiological, and Health Responses for Prolonged Exposure......Page 166
Effects of Thermal Environment on Specific Diseases......Page 167
Vibration......Page 168
Fig. 3 Factors Affecting Acceptability of Building Vibration......Page 169
Fig. 6 Mechanical Energy Spectrum......Page 170
Ionizing Radiation......Page 171
Nonionizing Radiation......Page 172
References......Page 173
Bibliography......Page 176
Animal Care/Welfare......Page 177
Heat Production......Page 178
Cyclic Conditions......Page 179
Fig. 5 Logic for Selecting the Appropriate Ventilation Rate in Livestock Buildings......Page 180
Fig. 6 General Growth Curves for Calves Fed Grain......Page 181
Reproduction......Page 182
Growth......Page 183
Growth......Page 184
Fig. 17 Room Latent Heat in Hog House......Page 185
Growth......Page 186
Heat and Moisture Production......Page 187
Plants: Greenhouses, Growth Chambers, and Other Facilities......Page 188
Energy Balance......Page 190
Fig. 26 Phytochrome Action Spectra......Page 191
Radiation Levels for Plant Growth......Page 192
Pollutants......Page 193
Animals......Page 194
Animals......Page 195
Plants......Page 196
Moisture Content......Page 197
Table 2 Approximate Temperature and Relative Humidity Requirements for Spore Germination and Gro.........Page 198
Table 3 Estimates of Optimum and Minimum Temperatures and Relative Humidity Conditions for Popul.........Page 199
Fig. 1 Equilibrium Moisture Relationships for Certain Crops......Page 200
Direct Methods......Page 201
Fungal Growth and Mycotoxins......Page 202
Rodents......Page 203
Thin Layer Drying......Page 204
Airflow Resistance......Page 205
Analysis of Deep Bed Drying......Page 206
Fig. 3 Time in Swath and Windrow Versus Field Losses of Leaves, Dry Matter, Protein, and Caroten.........Page 207
Cotton......Page 208
Tobacco (Curing)......Page 209
References......Page 210
Dusts, Fumes, and Smokes......Page 214
Suspended Particulates......Page 215
Fig. 1 Characteristics of Particles and Particle Dispersoids......Page 216
Flammable Gases and Vapors......Page 217
Table 3 Annual Median Concentrations for Total Suspended Particles, NO2, O3, and CO for 1979a......Page 218
Bioaerosols......Page 219
Table 4 Sources, Possible Concentrations, and Indoor-to-Outdoor Concentration Ratios of Some Ind.........Page 220
References......Page 221
Odor Sensation Attributes......Page 222
Dravnieks Olfactometer......Page 223
Fig. 2 Panelist Using Dravnieks Binary Dilution Olfactometer......Page 224
Odor Quality......Page 225
Humidity and Temperature......Page 226
Bibliography......Page 227
Terminology......Page 228
Uncertainty Sources......Page 229
Static Temperature Versus Total Temperature......Page 230
Table 1 Temperature Measurement......Page 231
Resistance Temperature Devices......Page 232
Fig. 3 Typical Resistance Temperature Device Bridge Circuits......Page 233
Thermocouples......Page 234
Multiple Thermocouples......Page 235
Psychrometers......Page 236
Table 3 Humidity Sensor Properties......Page 237
Ion Exchange Resin Electric Hygrometers......Page 238
Pressure Measurement......Page 239
Electromechanical Transducers......Page 240
Airborne Tracer Techniques......Page 241
Thermal Anemometers......Page 242
Measuring Flow in Ducts......Page 243
Flow Rate Measurement......Page 244
Venturi, Nozzle, and Orifice Flowmeters......Page 245
Fig. 8 Dimensions of ASME Long-Radius Flow Nozzles......Page 246
Turbine Flowmeters......Page 247
Voltmeters......Page 248
Fig. 21 Three-Wire, Three-Phase Power-Factor Meter......Page 249
Microphones......Page 250
Transducers......Page 251
Thermal Comfort Measurement......Page 252
Calculating Thermal Comfort......Page 253
Liquid Diffusivity......Page 254
Air Contaminant Measurement......Page 255
Amperometric Electrochemical CO2 Detectors......Page 256
Laboratory Measurements......Page 257
Digital Recording......Page 258
References......Page 259
Bibliography......Page 261
Flow Patterns......Page 262
Fig. 3 Flow Recirculation Regions and Exhaust-to-Intake Stretched-String Distances (Wilson 1982)......Page 263
Fig. 4 Local Pressure Coefficients (Cp ¥ 100) for a Tall Building with Varying Wind Direction......Page 264
Fig. 6 Variation of Surface Averaged Wall Pressure Coefficients for Low-Rise Buildings......Page 265
Sources of Wind Data......Page 266
Fig. 10 Frequency Distribution of Wind Speed and Direction......Page 267
Fume Hood Operation......Page 268
Atmospheric Dispersion of Building Exhaust......Page 269
Surface Vents on Flat-Roofed Buildings......Page 270
Stack Design Strategies......Page 271
Other Stack Design Standards......Page 272
Fig. 15 Design Procedure for Required Stack Height to Avoid Contamination......Page 273
Estimating Critical Dilution for Exhaust Stacks......Page 274
Similarity Requirements......Page 276
Symbols......Page 277
References......Page 278
Bibliography......Page 279
Characteristics of Fossil Fuels and Electricity......Page 280
Fig. 2 World Primary Energy Production by Resource Type: 1993......Page 281
Fig. 7 World Natural Gas Consumption: 1993......Page 282
Fig. 11 Per Capita Commercial Consumption by Selected Developed Countries in 1989......Page 283
Projected Overall Energy Consumption......Page 284
Demand-Side Management......Page 285
Site Considerations......Page 286
Bibliography......Page 287
Flammability Limits......Page 288
Combustion Modes......Page 289
Altitude Compensation......Page 290
Types and Properties......Page 291
Fig. 1 Approximate Viscosity of Fuel Oils......Page 292
Types and Properties of Liquid Fuels for Engines......Page 293
Types of Coals......Page 294
Air Required for Combustion......Page 295
Quantity of Flue Gas Produced......Page 297
Fig. 3 Theoretical Dew Points of Combustion Products of Industrial Fuels......Page 298
Efficiency Calculations......Page 299
Fig. 5 Flue Gas Losses with Various Fuels......Page 301
Fig. 21 Response of Discharge Air Temperature to Step Change in Setpoints at Various Integral Co.........Page 300
Air Pollution......Page 302
Bibliography......Page 303
Physical Properties......Page 304
Table 1 Standard Designation of Refrigerants (ASHRAE Standard 34)......Page 305
Table 2 Physical Properties of Selected Refrigerantsa......Page 306
Sound Velocity......Page 307
Table 4 Electrical Properties of Refrigerant Vapors......Page 308
Electronic Detection......Page 309
Table 8 Comparative Refrigerant Performance per Kilowatt at Various Evaporating and Condensing T.........Page 310
Table 10 Swelling of Elastomers in Liquid Refrigerants at Room Temperature......Page 312
Ammonia and Sulfur Dioxide Leaks......Page 311
References......Page 313
CHAPTER 19......Page 314
Fig. 1 Pressure-Enthalpy Diagram for Refrigerant 11......Page 315
Refrigerant 11 (Trichlorofluoromethane)Properties of Saturated Liquid and Saturated Vapor......Page 316
Fig. 2 Pressure-Enthalpy Diagram for Refrigerant 12......Page 317
Refrigerant 12 (Dichlorodifluoromethane)Properties of Saturated Liquid and Saturated Vapor......Page 318
Fig. 3 Pressure-Enthalpy Diagram for Refrigerant 13......Page 319
Refrigerant 13 (Chlorotrifluoromethane)Properties of Saturated Liquid and Saturated Vapor......Page 320
Fig. 4 Pressure-Enthalpy Diagram for Refrigerant 22......Page 321
Refrigerant 22 (Chlorodifluoromethane)Properties of Saturated Liquid and Saturated Vapor......Page 322
Fig. 5 Pressure-Enthalpy Diagram for Refrigerant 23......Page 323
Refrigerant 23 (Trifluoromethane)Properties of Saturated Liquid and Saturated Vapor......Page 324
Fig. 6 Pressure-Enthalpy Diagram for Refrigerant 32......Page 325
Refrigerant 32 (Difluoromethane)Properties of Saturated Liquid and Saturated Vapor......Page 326
Fig. 7 Pressure-Enthalpy Diagram for Refrigerant 113......Page 327
Refrigerant 113 (1,1,2-Trichloro-1,2,2-trifluoroethane)Properties of Saturated Liquid and Satura.........Page 328
Fig. 8 Pressure-Enthalpy Diagram for Refrigerant 114......Page 329
Refrigerant 114 (1,2-Dichloro-1,1,2,2-tetrafluoroethane)Properties of Saturated Liquid and Satur.........Page 330
Fig. 9 Pressure-Enthalpy Diagram for Refrigerant 123......Page 331
Refrigerant 123 (2,2-Dichloro-1,1,1-trifluoroethane)Properties of Saturated Liquid and Saturated.........Page 332
Fig. 10 Pressure-Enthalpy Diagram for Refrigerant 124......Page 333
Refrigerant 124 (2-Chloro-1,1,1,2-tetrafluoroethane)Properties of Saturated Liquid and Saturated.........Page 334
Fig. 11 Pressure-Enthalpy Diagram for Refrigerant 125......Page 335
Refrigerant 125 (Pentafluoroethane)Properties of Saturated Liquid and Saturated Vapor......Page 336
Fig. 12 Pressure-Enthalpy Diagram for Refrigerant 134a......Page 337
Refrigerant 134a (1,1,1,2-Tetrafluoroethane)Properties of Saturated Liquid and Saturated Vapor......Page 338
Refrigerant 134aProperties of Superheated Vapor......Page 339
Refrigerant 134aProperties of Superheated Vapor (Concluded)......Page 340
Fig. 13 Pressure-Enthalpy Diagram for Refrigerant 141b......Page 341
Refrigerant 141b (1,1-Dichloro-1-fluoroethane)Properties of Saturated Liquid and Saturated Vapor......Page 342
Fig. 14 Pressure-Enthalpy Diagram for Refrigerant 142b......Page 343
Refrigerant 142b (1-Chloro-1,1-difluoroethane)Properties of Saturated Liquid and Saturated Vapor......Page 344
Fig. 15 Pressure-Enthalpy Diagram for Refrigerant 152a......Page 345
Refrigerant 152a (1,1-Difluoroethane)Properties of Saturated Liquid and Saturated Vapor......Page 346
Fig. 16 Pressure-Enthalpy Diagram for Refrigerant 404A......Page 347
Refrigerant 404A [R-125/143a/134a (44/52/4)]Properties of Liquid on the Bubble Line and Vapor on.........Page 348
Fig. 17 Pressure-Enthalpy Diagram for Refrigerant 407C......Page 349
Refrigerant 407C [R-32/125/134a (23/25/52)]Properties of Liquid on the Bubble Line and Vapor on .........Page 350
Refrigerant 410A [R-32/125 (50/50)]Properties of Liquid on the Bubble Line and Vapor on the Dew .........Page 351
Refrigerant 507 [R-125/143a (50/50)]Properties of Saturated Liquid and Saturated Vapor......Page 352
Fig. 18 Pressure-Enthalpy Diagram for Refrigerant 500......Page 353
Refrigerant 500 [R-12/152a (73.8/26.2)]Properties of Saturated Liquid and Saturated Vapor......Page 354
Fig. 19 Pressure-Enthalpy Diagram for Refrigerant 502......Page 355
Refrigerant 502 [R-22/115 (48.8/51.2)]Properties of Saturated Liquid and Saturated Vapor......Page 356
Fig. 20 Pressure-Enthalpy Diagram for Refrigerant 503......Page 357
Refrigerant 503 [R-23/13 (40.1/59.9)]Properties of Saturated Liquid and Saturated Vapor......Page 358
Fig. 21 Pressure-Enthalpy Diagram for Refrigerant 717 (Ammonia)......Page 359
Refrigerant 717 (Ammonia)Properties of Saturated Liquid and Saturated Vapor......Page 360
Fig. 22 Pressure-Enthalpy Diagram for Refrigerant 718 (Water/Steam)......Page 361
Refrigerant 718 (Water/Steam)Properties of Saturated Liquid and Saturated Vapor......Page 362
Fig. 23 Pressure-Enthalpy Diagram for Refrigerant 744 (Carbon Dioxide)......Page 363
Refrigerant 744 (Carbon Dioxide)Properties of Saturated Liquid and Saturated Vapor......Page 364
Fig. 24 Pressure-Enthalpy Diagram for Refrigerant 50 (Methane)......Page 365
Refrigerant 50 (Methane)Properties of Saturated Liquid and Saturated Vapor......Page 366
Fig. 25 Pressure-Enthalpy Diagram for Refrigerant 170 (Ethane)......Page 367
Refrigerant 170 (Ethane)Properties of Saturated Liquid and Saturated Vapor......Page 368
Fig. 26 Pressure-Enthalpy Diagram for Refrigerant 290 (Propane)......Page 369
Refrigerant 290 (Propane)Properties of Saturated Liquid and Saturated Vapor......Page 370
Fig. 27 Pressure-Enthalpy Diagram for Refrigerant 600 (n-Butane)......Page 371
Refrigerant 600 (n-Butane)Properties of Saturated Liquid and Saturated Vapor......Page 372
Fig. 28 Pressure-Enthalpy Diagram for Refrigerant 600a (Isobutane)......Page 373
Refrigerant 600a (Isobutane)Properties of Saturated Liquid and Saturated Vapor......Page 374
Fig. 29 Pressure-Enthalpy Diagram for Refrigerant 1150 (Ethylene)......Page 375
Refrigerant 1150 (Ethylene)Properties of Saturated Liquid and Saturated Vapor......Page 376
Fig. 30 Pressure-Enthalpy Diagram for Refrigerant 1270 (Propylene)......Page 377
Refrigerant 1270 (Propylene)Properties of Saturated Liquid and Saturated Vapor......Page 378
Fig. 31 Pressure-Enthalpy Diagram for Refrigerant 702 (Normal Hydrogen)......Page 379
Refrigerant 702 (Normal Hydrogen)Properties of Gas at 0.101 325 MPa (one standard atmosphere)......Page 380
Fig. 32 Pressure-Enthalpy Diagram for Refrigerant 702p (Parahydrogen)......Page 381
Refrigerant 702p (Parahydrogen)Properties of Gas at 0.101 325 MPa (one standard atmosphere)......Page 382
Fig. 33 Pressure-Enthalpy Diagram for Refrigerant 704 (Helium)......Page 383
Refrigerant 704 (Helium)Properties of Gas at 0.101 325 MPa (one standard atmosphere)......Page 384
Fig. 34 Pressure-Enthalpy Diagram for Refrigerant 720 (Neon)......Page 385
Refrigerant 720 (Neon) Properties of Gas at 0.101 325 MPa (one standard atmosphere)......Page 386
Fig. 35 Pressure-Enthalpy Diagram for Refrigerant 728 (Nitrogen)......Page 387
Refrigerant 728 (Nitrogen)Properties of Gas at 0.101 325 MPa (one standard atmosphere)......Page 388
Fig. 36 Pressure-Enthalpy Diagram for Refrigerant 729 (Air)......Page 389
Refrigerant 729 (Air)Properties of Gas at 14.696 psia (one standard atmosphere)......Page 390
Fig. 37 Pressure-Enthalpy Diagram for Refrigerant 732 (Oxygen)......Page 391
Refrigerant 732 (Oxygen)Properties of Gas at 0.101 325 MPa (one standard atmosphere)......Page 392
Fig. 38 Pressure-Enthalpy Diagram for Refrigerant 740 (Argon)......Page 393
Refrigerant 740 (Argon)Properties of Gas at 0.101 325 MPa (one standard atmosphere)......Page 394
Fig. 39 Enthalpy-Concentration Diagram for Ammonia-Water Solutions......Page 395
Refrigerant Temperature (t¢ = C) and Enthalpy (h = kJ/kg) of Lithium Bromide Solutions......Page 396
Fig. 40 Enthalpy-Concentration Diagram for Water-Lithium Bromide Solutions......Page 397
Fig. 41 Equilibrium Chart for Aqueous Lithium Bromide Solutions......Page 398
R-124 (2-Chloro-1,1,1,2-tetrafluoroethane)......Page 399
R-502 [R-22/115 (48.8/51.2)]......Page 400
R-702 (Hydrogen)......Page 401
R-740 (Argon)......Page 402
Physical Properties......Page 403
Corrosion Inhibition......Page 404
Fig. 5 Specific Heat of Sodium Chloride Brines......Page 405
Table 3 Physical Properties of Ethylene Glycol and Propylene Glycol......Page 406
Table 5 Freezing and Boiling Points of Aqueous Solutions of Propylene Glycol......Page 407
Table 7 Specific Heat of Aqueous Solutions of Ethylene Glycol......Page 408
Table 9 Viscosity of Aqueous Solutions of Ethylene Glycol......Page 409
Table 11 Specific Heat of Aqueous Solutions of Propylene Glycol......Page 410
Table 13 Viscosity of Aqueous Solutions of Propylene Glycol......Page 411
Fig. 14 Specific Heat of Aqueous Solutions of Industrially Inhibited Propylene Glycol (vol. %)......Page 412
Service Considerations......Page 413
Table 17 Summary of Physical Properties of Polydimethylsiloxane Mixture and d-Limonene......Page 414
Bibliography......Page 415
Desiccant Cycle......Page 416
Table 1 Vapor Pressures of Different Relative Humidities at 21C......Page 417
Fig. 5 Surface Vapor Pressure of Water-Lithium Chloride Solutions......Page 418
Fig. 6 Adsorption and Structural Characteristics of Some Experimental Silica Gels......Page 419
Desiccant Life......Page 420
Bibliography......Page 421
Terminology and Symbols......Page 422
Thermal Properties......Page 423
Acoustics......Page 424
Fig. 2 Typical Variation of Apparent Thermal Conductivity with Fiber Diameter and Density......Page 425
Environmental and Application Conditions......Page 426
Table 1 Variation in Surface Heat Flux for Vertical Surfaces at 26.7C with Different Temperatur.........Page 427
Calculating Overall Thermal Resistance......Page 428
Fig. 5 Heat Flow Through Cylindrical Surfaces......Page 429
Total Cost......Page 430
Computation......Page 431
Fig. 8 Typical Relationship of Life-Cycle Cost to Energy Use......Page 432
Effect of Moisture on Heat Flow......Page 433
Moisture in Building Materials......Page 434
Capillary Suction......Page 435
Water Vapor Diffusion......Page 436
Airflow Retarder Functions and Properties......Page 437
Classification of Vapor Retarders......Page 438
Dew-Point Method......Page 439
Table 5 Initial and Final Calculations of Vapor Pressure Drops and Surface Vapor Pressures in Ex.........Page 440
Fig. 12 Kieper Diagram for 21C, 40% rh Indoors and -6.6C, 50% rh Outdoors......Page 441
Preventing Surface Condensation......Page 442
Fig. 16 Conversion of Equivalent Thickness to Actual Thickness for Pipe Insulation......Page 443
References......Page 444
Bibliography......Page 446
Heavy Steel Frame Construction......Page 447
Masonry Construction......Page 448
Roof Deck Construction......Page 449
Air Leakage Control......Page 450
Indoor Humidity Control......Page 451
Attics......Page 452
Example of Residential Wall Construction for Heating Climates......Page 453
Attics and Cathedral Ceilings......Page 454
Airflow Retarders and Water Vapor Retarders......Page 455
Membrane Roof Systems......Page 456
Crawl Spaces......Page 457
Fig. 13 Example of Residential Basement Construction for Mixed Climates......Page 458
Fig. 15 Heat Loss at Building Corners......Page 459
Fig. 17 Heat Loss Effect at Ceiling Edge......Page 460
Insulation Finish for Below-Ambient Temperatures......Page 461
Underground Pipe Insulation......Page 462
Insulation Finish for Below-Ambient Temperatures......Page 463
Interior Finish......Page 464
General Principles......Page 465
References......Page 466
Bibliography......Page 467
Fig. 1 Surface Conductance for Different Surfaces as Affected by Air Movement......Page 468
Fig. 2 Insulated Wood Frame Wall (Example 1)......Page 469
Table 3 Thermal Resistances of Plane Air Spacesa,b,c, K·m2/W......Page 470
Table 4 Typical Thermal Properties of Common Building and Insulating Materials—Design Valuesa......Page 471
Masonry Walls......Page 475
Constructions Containing Metal......Page 476
Fig. 5 Gypsum Roof Deck on Bulb Tees (Example 4)......Page 477
Ceilings and Roofs......Page 478
Uo Concept......Page 479
Table 6 Transmission Coefficients U for Wood and Steel Doors, W/(m2·K)......Page 480
Apparent Thermal Conductivity of Soil......Page 481
Heat Loss from Pipes and Flat Surfaces......Page 482
Table 9 Typical Water Vapor Permeance and Permeability Values for Common Building Materialsa......Page 483
Table 10 Typical Thermal Conductivity for Industrial Insulations at Various Mean Temperatures—De.........Page 485
Table 11B Heat Loss from Flat Surfaces to Still Air at 27C, W/m......Page 486
Table 12 Heat Loss from Bare Copper Tube to Still Air at 27Ca, W/m......Page 487
Table 13 Recommended Thicknesses for Pipe and Equipment Insulation......Page 488
Fig. 9 Surface Resistance as Function of Heat Transmission for Flat Surfaces and Cylindrical Sur.........Page 490
Fig. 1 Two-Space Building with Forced Ventilation, Infiltration, and Exfiltration......Page 492
Fig. 4 Entrainment Flow Within a Space......Page 493
Thermal Loads......Page 494
Table 1 Indoor Air Pollutants and Sources......Page 495
Decay or Growth......Page 496
Age of Air......Page 497
Driving Mechanisms......Page 498
Fig. 5 Pressure Differences Caused by Stack Effect for Typical Structure (Heating)......Page 499
Fig. 6 Stack Effect in Various Buildings......Page 500
Fig. 7 Distribution of Inside and Outside Pressures over Height of Building......Page 501
Airflow Through Openings......Page 502
Flow Caused by Wind......Page 503
Natural Ventilation Guidelines......Page 504
Residential Air Leakage......Page 505
Conversion Between Ratings......Page 506
Leakage Distribution......Page 507
Table 3 Effective Air Leakage Areas (Low-Rise Residential Applications)......Page 509
Controlling Air Leakage......Page 508
Fig. 15 Air Leakage Rate of Door Versus Average Crack Width......Page 510
Fig. 16 Airtightness Zones for Residences in the United States......Page 511
Multizone Models......Page 512
Table 8 Wind Coefficient Cw......Page 513
Ventilation Rate Procedure......Page 514
Symbols......Page 515
References......Page 516
Bibliography......Page 519
Values of Cumulative Frequency of Occurrence Representing Design Conditions......Page 520
Applicability and Characteristics of Design Conditions......Page 521
Representativeness of Data and Sources of Uncertainty......Page 522
Observational Data Sets......Page 523
Fig. 1 Location of Weather Stations......Page 524
Table 1A Heating and Wind Design Conditions—United States......Page 525
Table 1B Cooling and Dehumidification Design Conditions—United States......Page 533
Table 2A Heating and Wind Design Conditions—Canada......Page 541
Table 2B Cooling and Dehumidification Design Conditions—Canada)......Page 543
Table 3A Heating and Wind Design Conditions—World Locations......Page 545
Table 3B Cooling and Dehumidification Design Conditions—World Locations......Page 559
Peak Load Computation......Page 573
Table 2 CLTD Values for Multifamily Residencesa......Page 574
Table 4 Window Glass Load Factors (GLFs) for Multifamily Residencesa......Page 575
Latent Heat Sources......Page 576
Fig. 2 Floor Plan of Single-Family Detached House......Page 577
Heating Load......Page 578
Outdoor Design Temperature......Page 579
Attic Temperature......Page 580
Fig. 3 Uninsulated Crawl Space......Page 581
Through Basement Walls......Page 582
Fig. 6 Lines of Constant Amplitude......Page 583
Transient Calculations for Floor Slabs......Page 584
Crack Length Method......Page 585
Bibliography......Page 586
Cooling Load Principles......Page 587
Heat Balance Fundamentals......Page 588
CLTD/SCL/CLF Method......Page 589
Data Assembly......Page 590
Sol-Air Temperature......Page 591
Table 2 Percentage of Daily Range......Page 592
Fig. 2 Thermal Storage Effect in Cooling Load from Lights......Page 593
Table 3 Rates of Heat Gain from Occupants of Conditioned Spaces......Page 594
Power......Page 595
Appliances......Page 596
Infiltration......Page 597
Table 8 Recommended Rate of Heat Gain from Restaurant Equipment Located in Air-Conditioned Areas.........Page 598
Table 9B Heat Gain Versus Nameplate Rating From Electrical Office Equipment......Page 600
Latent Heat Gain from Moisture through Permeable Building Materials......Page 601
Heating Load Principles......Page 602
Sensible Heat Gain......Page 603
Table 10 Summary of TFM Load Calculation Procedures......Page 604
Table 11 Thermal Properties and Code Numbers of Layers Used in Wall and Roof Descriptions for Ta.........Page 605
Table 12 Roof Group Numbers......Page 606
Table 13 Roof Conduction Transfer Function Coefficients (b and d Factors) (Concluded)......Page 607
Table 14 Roof Conduction Transfer Function Coefficients Scn, Time Lag, U-Factors, and Decrement .........Page 608
Table 15 Wall Group Numbers, Walls for Mass-In Case—Dominant Wall Material......Page 609
Table 16 Walls for Integral Mass Case—Dominant Wall Material......Page 610
Table 17 Walls for Mass-Out Case—Dominant Wall Material......Page 611
Table 18 Wall Conduction Transfer Function Coefficients (b and d Factors) (Concluded)......Page 612
Table 19 Wall Conduction Transfer Function Coefficients Scn, Time Lag, U-Factors, and Decrement .........Page 613
Heat Gain through Interior Partitions, Floors, and Ceilings......Page 614
Table 22 Floor and Ceiling Types Specified by Zone Location Parameter......Page 615
Table 25 Room Transfer Functions: v0 and v1 Coefficients......Page 616
Heat Extraction Rate and Room Temperature......Page 617
Table 26 Normalized Coefficients of Space Air Transfer Functionsa......Page 618
Example Cooling Load Calculation......Page 619
Fig. 4 Plan of One-Story Office Building......Page 620
Table 28 Tabulation of Data for Example 6......Page 622
CLTD/SCL/CLF Calculation Procedure......Page 625
Table 29 Procedure for Calculating Space Design Cooling Load by CLTD/SCL/CLF Method......Page 626
Shading Coefficient......Page 627
Table 31 Roof Numbers Used in Table 30......Page 628
Table 32 July Cooling Load Temperature Differences for Calculating Cooling Load from Sunlit Wall.........Page 629
Table 32 July Cooling Load Temperature Differences for Calculating Cooling Load from Sunlit Wall.........Page 630
Table 32 July Cooling Load Temperature Differences for Calculating Cooling Load from Sunlit Wall.........Page 631
Table 33A Wall Types, Mass Located Inside Insulation, for Use with Table 32......Page 632
Table 33B Wall Types, Mass Evenly Distributed, for Use with Table 32......Page 633
Table 33C Wall Types, Mass Located Outside Insulation, for Use with Table 32......Page 634
Table 35B Zone Types for Use with SCL and CLF Tables, Single-Story Building......Page 635
Table 36 July Solar Cooling Load For Sunlit Glass 40North Latitude......Page 636
Table 37 Cooling Load Factors for People and Unhooded Equipment......Page 637
Table 38 Cooling Load Factors for Lights......Page 638
Table 39 Cooling Load Factors for Hooded Equipment......Page 639
Table 40 Solar Cooling Load for Windows, Example 11......Page 640
Limitations of CLTD/SCL/CLF Methods......Page 641
Treatment of Heat Gain and Cooling Load Conversion Procedures......Page 642
Table 43 Summary of TETD/TA Load Calculation Procedures......Page 643
Cooling Load by Time Averaging......Page 644
Example Cooling Load Calculation Using TETD/TA......Page 645
Table 45 Tabulation of Data for Example 13—TETD/TA Method......Page 646
Table 45 Tabulation of Data for Example 13—TETD/TA Method (Concluded)......Page 647
Comparison of Results......Page 649
References......Page 650
CLTD and CLF Data......Page 651
Fig. 1 Insulating Glass Unit (IGU) Construction Detail......Page 652
Fig. 2 Types of Residential Windows......Page 653
Edge-of-Glass UFactor......Page 654
Indoor and Outdoor Surface Heat Transfer Coefficients......Page 655
Representative UFactors......Page 656
Table 4 Air Space Coefficients for Horizontal Heat Flow......Page 657
Fig. 5 Standard Fenestration Units......Page 658
Table 5 U-Factors for Various Fenestration Products in W/(m2·K)......Page 659
Table 5 U-Factors for Various Fenestration Products in W/(m2·K)(Concluded)......Page 660
Table 7 U-Factors of Doors in W/(m2·K)......Page 661
Fig. 6 Details of Stile and Rail Door......Page 662
Fig. 7 Temperature Distribution on Indoor Surfaces of Insulated Glazing Unit......Page 663
Fig. 9 Minimum Condensation Resistance Requirements (th = 20C)......Page 664
Table 8 Extraterrestrial Solar Irradiance and Related Data......Page 665
Table 9 Portions of Total Solar Spectral Irradiance Contained in Portions of Visible Spectrum......Page 666
Table 10 Surface Orientations and Azimuths Measured from South......Page 667
Optical Properties......Page 668
Fig. 20 Geometry for Definition of Plane and Solid Angles......Page 669
Fig. 22 Spectral Transmittance for Typical Architectural Glass......Page 670
Spectrally Selective Glazing......Page 671
Absorbed Solar Radiation......Page 672
Solar Heat Gain Calculations......Page 673
Shading Coefficient......Page 674
Airflow Windows......Page 675
Table 11 Visible Transmission (VT), Shading Coefficient (SC), and Solar Heat Gain Coefficient (S.........Page 676
Glass Block Walls......Page 677
Fenestration Heat BalanceSolar Heat Gain......Page 678
Simplified Solar Heat Gain Calculations......Page 679
Table 15 Solar Irradiance (EDN) and Solar Heat Gain Factors (SHGF) for 16 North Latitude......Page 680
Table 16 Solar Irradiance (EDN) and Solar Heat Gain Factors (SHGF) for 24 North Latitude......Page 681
Table 17 Solar Irradiance (EDN) and Solar Heat Gain Factors (SHGF) for 32 North Latitude......Page 682
Table 18 Solar Irradiance (EDN) and Solar Heat Gain Factors (SHGF) for 40 North Latitude......Page 683
Table 19 Solar Irradiance (EDN) and Solar Heat Gain Factors (SHGF) for 48 North Latitude......Page 684
Table 20 Solar Irradiance (EDN) and Solar Heat Gain Factors (SHGF) for 56 North Latitude......Page 685
Table 21 Solar Irradiance (EDN) and Solar Heat Gain Factors (SHGF) for 64 North Latitude......Page 686
Table 22 Solar Reflectances of Foreground Surfaces......Page 687
Complex Fenestration Systems......Page 688
Table 26 Shading Coefficients for Insulating Glass with Indoor Shading by Venetian Blinds or Rol.........Page 689
Calculating System Transmittance and Absorptances from Layer Properties......Page 690
Table 29 Shading Coefficients for Single and Insulating Glass with Draperies......Page 691
Louvers and Sunshades......Page 692
Partially Shaded Fenestration Products......Page 693
Draperies......Page 694
Indoor Shading Devices......Page 695
Fig. 35 Noise Reduction Coefficient Versus Openness Factor......Page 696
Annual Energy Performance......Page 697
Fig. 37 Visible Transmittance Versus SHGC for Several Glazings with Different Spectral Selectivi.........Page 698
Durability......Page 699
References......Page 700
Bibliography......Page 702
Common Factors......Page 703
Tools for Energy Analysis......Page 704
Heat Balance Method......Page 705
Fig. 1 Floor Plan of Building for Example......Page 707
Weighting Factor Method......Page 710
Thermal Network Methods......Page 711
Fig. 2 Part-Load Curves for Typical Fan Operating Strategies......Page 712
Application To Cooling and Dehumidifying Coils......Page 713
Modeling Strategies......Page 714
Fig. 5 Boiler Modeled with Elementary Components......Page 715
Fig. 7 General Schematic of Compressor......Page 716
Fig. 9 Ideal Mechanical Cycle......Page 717
Kelvin Day and Bin Methods......Page 718
Fig. 11 Annual Heating Days DDh(tbal) as Function of Balance Temperature tbal......Page 719
Seasonal Efficiency......Page 720
Table 2 Kelvin-Day Calculation from Monthly Averaged Data......Page 721
Correlation Methods......Page 722
Fig. 14 Schematic of Variable Air Volume System with Reheat......Page 723
Inverse Modeling......Page 724
Fig. 16 Flow Chart for Building Energy Simulation Program......Page 725
Neural Networks Applied to Buildings......Page 726
Application of Inverse Models......Page 727
Fig. 20 Neural Network Prediction of Residential Heating......Page 728
Table 5 Classification of Methods for Thermal Analysis of Buildings......Page 729
References......Page 730
Bibliography......Page 732
Mixing Systems......Page 733
Fig. 1 Air Motion Characteristics of Group A Outlets......Page 734
Fig. 2 Air Motion Characteristics of Group B Outlets......Page 735
Fig. 5 Air Motion Characteristics of Group E Outlets......Page 736
Localized Ventilation......Page 737
Air Diffusion Performance Index (ADPI)......Page 738
Cooling Zone Design Criteria......Page 739
Isothermal Free Jets......Page 740
Table 4 Recommended Values of Centerline Velocity Constant for Standard Openings......Page 741
Fig. 10 Chart for Determining Centerline Velocities of Axial and Radial Jets......Page 742
Nonisothermal Free Jets......Page 743
Duct Approaches to Diffuser Outlets......Page 744
Outlet Location and Selection......Page 745
Group E Outlets......Page 746
Perimeter Spaces......Page 747
References......Page 748
Bibliography......Page 749
Bernoulli Equation......Page 751
Pressure Measurement......Page 752
Fig. 3 Multiple Stack Analysis......Page 753
Fig. 5 Single Stack with Fan for Examples 3 and 4......Page 754
Fig. 6 Triple Stack System for Example 5......Page 755
Fig. 7 Pressure Changes During Flow in Ducts......Page 756
Table 1 Duct Roughness Factors......Page 757
Local Loss Coefficients......Page 758
Fig. 9 Friction Chart for Round Duct (r = 1.20 kg/m3 and e = 0.09 mm)......Page 759
Duct Fitting Database......Page 761
Fan System Effect Coefficients......Page 762
Testing, Adjusting, and Balancing Considerations......Page 763
Duct Insulation......Page 764
Duct System Leakage......Page 765
Table 6 Duct Leakage Classificationa......Page 766
System Component Design Velocities......Page 767
Equal Friction Method......Page 768
T-Method Optimization......Page 769
Fig. 16 Schematic for Example 8......Page 770
HVAC Duct Design Procedures......Page 771
Industrial Exhaust System Duct Design......Page 772
Fig. 20 System Schematic with Section Numbers for Example 9......Page 775
Fig. 21 Total Pressure Grade Line for Example 9......Page 776
References......Page 777
Bibliography......Page 778
CD3-12 Elbow, 3 Gore, 90 Degree, r/D = 0.75 to 2.0......Page 779
CD6-1 Screen (Only)......Page 780
ED1-3 Bellmouth, with Wall......Page 781
ED5-1 Wye, 30 Degree, Converging......Page 782
ED5-1 Wye, 30 Degree, Converging (Continued)......Page 783
ED5-1 Wye, 30 Degree, Converging (Concluded)......Page 784
ED5-2 Wye, 45 Degree, Converging......Page 785
ED5-2 Wye, 45 Degree, Converging (Continued)......Page 786
ED5-6 Capped Wye, Branch with 45-Degree Elbow, Branch 90 Degrees to Main, Converging......Page 787
ED5-9 Symmetrical Wye, 60 Degree, Db1 ³ Db2, Converging......Page 788
ED7-1 Centrifugal Fan Located in Plenum or Cabinet......Page 789
CR3-1 Elbow, Smooth Radius, Without Vanes......Page 790
CR3-10 Elbow, Mitered, 90 Degree, Single-Thickness Vanes (Design 2)......Page 791
CR6-1 Screen (Only)......Page 792
CR9-1 Damper, Butterfly......Page 793
ER3-1 Elbow, 90 Degree, Variable Inlet/Outlet Areas, Exhaust/Return Systems......Page 794
SR2-3 Plain Diffuser (Two Sides Parallel), Free Discharge......Page 795
SR3-1 Elbow, 90 Degree, Variable Inlet/Outlet Areas, Supply Air Systems......Page 796
SR5-1 Smooth Wye of Type As + Ab ³ Ac, Branch 90 to Main, Diverging......Page 797
SR7-1 Fan, Centrifugal, Without Outlet Diffuser, Free Discharge......Page 798
SR7-17 Pyramidal Diffuser at Centrifugal Fan Outlet with Ductwork......Page 799
Valve and Fitting Losses......Page 800
Calculating Pressure Losses......Page 801
Allowances for Aging......Page 802
Valve and Fitting Pressure Drop......Page 803
Fig. 3 Friction Loss for Water in Plastic Pipe (Schedule 80)......Page 804
Service Water Piping......Page 805
Fig. 5 Demand Versus Fixture Units, Mixed System, High Part of Curve......Page 806
Fig. 9 Variation of Pressure Loss with Flow Rate for Various Faucets and Cocks......Page 807
Steam Piping......Page 808
Table 12 Comparative Capacity of Steam Lines at Various Pitches for Steam and Condensate Flowing.........Page 809
Fig. 10 Flow Rate and Velocity of Steam in Schedule 40 Pipe at Saturation Pressure of 101 kPa [0.........Page 810
Table 14 Flow Rate of Steam in Schedule 40 Pipe......Page 811
Table 16 Return Main and Riser Capacities for Low-Pressure Systems, g/s......Page 812
Table 17 Vented Dry Condensate Return for Gravity Flow Based on Manning Equation......Page 813
Table 19 Flow Rate for Dry-Closed Returns......Page 814
One-Pipe Systems......Page 815
Pipe Sizes for Heavy Oil......Page 816
References......Page 817
Letter Symbols......Page 819
Table 1 Abbreviations for Text, Drawings, and Computer Programs......Page 820
Dimensionless Numbers......Page 822
Graphical Symbols for Drawings......Page 823
Valves......Page 824
Piping Specialties......Page 825
Air Moving Devices and Components......Page 826
Refrigeration......Page 827
Controls......Page 828
Electrical Equipment......Page 829
Table 4 Size of Legend Letters......Page 830
Table 1 Conversions to SI Units......Page 831
Table 2 Conversion Factors......Page 832
Table 1 Properties of Vapor......Page 833
Table 2 Properties of Liquids......Page 834
Table 3 Properties of Solids......Page 835
References......Page 836
Fig. 1 Discharge Air Temperature Control......Page 837
Fig. 5 Floating control Showing Variations in Controlled Variable as Load Changes......Page 838
Classification by Energy Source......Page 839
Fig. 9 Typical Three-Way Mixing and Diverting Valves......Page 840
Fig. 12 Pump and System Curves with Valve Control......Page 841
Fig. 14 Characteristic Curves of Installed Parallel Blade Dampers......Page 842
Temperature Sensors......Page 843
Lighting Level Sensors......Page 844
Digital Controllers......Page 845
Auxiliary Control Devices......Page 846
Tuning PI Controllers......Page 847
Tuning Digital Controls......Page 848
Codes and Standards......Page 849
Contributors......Page 850


First 10 Pages Of the book


Comments Of The Book