sign in

Username Password

Forget Password ? ? Click Here

Don't Have An Account ? Create One

sign up

name Username Email Mobile Password

To contact us, you can contact us via the following mobile numbers by calling and WhatsApp


+989115682731 Connect To WhatsApp
+989917784643 Connect To WhatsApp
EnglishEnglish SpanishSpanish PortuguesePortuguese FrenchFrench GermanGerman ChineseChinese

Unlimited Access

For Registered Users

Secure Payment

100% Secure Payment

Easy Returns

10 Days Returns

24/7 Support

Call Us Anytime

ASHRAE Handbook of Fundamentals SI edn 2017 2017 book

ASHRAE Handbook of Fundamentals SI edn 2017

Details Of The Book

ASHRAE Handbook of Fundamentals SI edn 2017

edition:  
Authors:   
serie: 2017 
 
publisher: ASHRAE 
publish year: 2017 
pages: 1014 
language: English 
ebook format : PDF (It will be converted to PDF, EPUB OR AZW3 if requested by the user) 
file size: 83 MB 

price : $9.49 13 With 27% OFF



Your Rating For This Book (Minimum 1 And Maximum 5):

User Ratings For This Book:       


You can Download ASHRAE Handbook of Fundamentals SI edn 2017 Book After Make Payment, According to the customer's request, this book can be converted into PDF, EPUB, AZW3 and DJVU formats.


Abstract Of The Book



Table Of Contents

00......Page 2
--- CONTRIBUTORS ---......Page 4
--- Preface ---......Page 6
Table 1 Standard Atmospheric Data for Altitudes to 10 000 m......Page 7
Table 2 Thermodynamic Properties of Moist Air at Standard Atmospheric Pressure, 101.325 kPa......Page 8
Table 3 Thermodynamic Properties of Water at Saturation......Page 11
Fig. 13 Thermal Conductivity of Moist Air......Page 22
Fig. 1 ASHRAE Psychrometric Chart No. 1......Page 17
Fig. 3 Schematic Solution for Example 2......Page 18
Fig. 6 Adiabatic Mixing of Two Moist Airstreams......Page 19
Fig. 9 Schematic Solution for Example 5......Page 20
Fig. 11 Schematic Solution for Example 6......Page 21
Fig. 1 Energy Flows in General Thermodynamic System......Page 24
Fig. 9 Schematic p-h Diagram for Example 2......Page 31
Fig. 14 Schematic of Real, Direct-Expansion, Single-Stage Mechanical Vapor-Compression Refrigeration System......Page 34
Fig. 15 Pressure-Enthalpy Diagram of Actual System and Theoretical Single-Stage System Operating Between Same Inlet Air Temperatures tR and t0......Page 35
Fig. 16 Thermal Cycles......Page 36
Table 5 Refrigerant/Absorbent Pairs......Page 39
Table 8 Simulation Results for Single-Effect Water/Lithium Bromide Absorption Chiller......Page 41
Fig. 21 Double-Effect Water/Lithium Bromide Absorption Cycle with State Points......Page 42
Fig. 22 Single-Effect Ammonia/Water Absorption Cycle......Page 43
Fig. 4 Azeotropic Behavior Shown on T-x Diagram......Page 29
Fig. 7 Carnot Vapor Compression Cycle......Page 30
Fig. 11 Processes of Lorenz Refrigeration Cycle......Page 32
Fig. 12 Areas on T-s Diagram Representing Refrigerating Effect and Work Supplied for Theoretical Single-Stage Cycle Using Zeotropic Mixture as Refrigerant......Page 33
Fig. 17 Single-Effect Absorption Cycle......Page 37
Fig. 20 Single-Effect Water/Lithium Bromide Absorption Cycle Dühring Plot......Page 40
Fig. 1 Velocity Profiles and Gradients in Shear Flows......Page 46
Fig. 11 Effect of Viscosity Variation on Velocity Profile of Laminar Flow in Pipe......Page 50
Table 3 Fitting Loss Coefficients of Turbulent Flow......Page 53
Fig. 3 Velocity Fluctuation at Point in Turbulent Flow......Page 48
Fig. 8 Geometric Separation, Flow Development, and Loss in Flow Through Orifice......Page 49
Fig. 12 Blower and Duct System for Example 1......Page 51
Fig. 13 Relation Between Friction Factor and Reynolds Number......Page 52
Fig. 14 Diagram for Example 2......Page 54
Fig. 18 Differential Pressure Flowmeters......Page 55
Fig. 19 Flowmeter Coefficients......Page 56
Fig. 20 Temporal Increase in Velocity Following Sudden Application of Pressure......Page 57
Fig. 21 Cavitation in Flows in Orifice or Valve......Page 58
Fig. 1 (A) Conduction and (B) Convection......Page 61
Fig. 3 Thermal Circuit......Page 63
Table 3 Multidimensional Conduction Shape Factors......Page 65
Table 4 Values of C1 and U1 in Equations (14) to (17)......Page 69
Table 5 Emissivities and Absorptivities of Some Surfaces......Page 73
Fig. 17 Diagrams for Example 9......Page 76
Table 8 Forced-Convection Correlations......Page 78
Table 9 Natural Convection Correlations......Page 80
Fig. 24 Cross Section of Double-Pipe Heat Exchanger in Example 13......Page 83
Table 11 Single-Phase Heat Transfer and Pressure Drop Correlations for Plate Exchangers......Page 85
Table 12 Equations for Augmented Forced Convection (Single Phase)......Page 88
Fig. 31 Microchannel Dimensions......Page 89
Table 17 Selected Studies on Rotation......Page 90
Fig. 33 Heat Transfer Coefficients (With and Without EHD) as Functions of Reynolds Number......Page 91
Fig. 2 Interface Resistance Across Two Layers......Page 62
Fig. 5 Efficiency of Annular Fins of Constant Thickness......Page 64
Fig. 8 Efficiency of Four Types of Spines......Page 66
Fig. 10 Hexagonal Tube Array......Page 67
Fig. 12 Transient Temperatures for Infinite Cylinder, m = 1/Bi......Page 70
Fig. 14 Solid Cylinder Exposed to Fluid......Page 71
Fig. 16 Diagram for Example 8......Page 74
Fig. 19 Boundary Layer Build-up in Entrance Region of Tube or Channel......Page 77
Fig. 21 Heat Transfer Coefficient for Turbulent Flow of Water Inside Tubes......Page 79
Fig. 23 Diagram for Example 12......Page 81
Fig. 25 Plate Parameters......Page 84
Fig. 27 Typical Tube-Side Enhancements......Page 86
Fig. 29 Enhanced Surfaces for Gases......Page 87
Fig. 1 Characteristic Pool Boiling Curve......Page 97
Table 1 Equations for Natural Convection Boiling Heat Transfer......Page 99
Fig. 4 Boiling Heat Transfer Coefficients for Flooded Evaporator......Page 101
Table 3 Equations for Forced Convection Boiling in Tubes......Page 103
Table 4 Heat Transfer Coefficient/Nusselt Number Correlations for Film-Type Condensation......Page 108
Table 5 Constants in Equation (29d) for Different Void Fraction Correlations......Page 111
Fig. 10 Pressure Drop Characteristics of Two-Phase Flow: Variation of Two-Phase Multiplier with Lockhart-Martinelli Parameter......Page 114
Fig. 3 Correlation of Pool Boiling Data in Terms of Reduced Pressure......Page 98
Fig. 5 Flow Regimes in Typical Smooth Horizontal Tube Evaporator......Page 102
Fig. 7 Film Boiling Correlation ......Page 105
Fig. 8 Origin of Noncondensable Resistance......Page 110
Fig. 9 Qualitative Pressure Drop Characteristics of Two-Phase Flow Regime......Page 113
Fig. 11 Schematic Flow Representation of a Typical Force- Fed Microchannel Heat Sink (FFMHS)......Page 115
Fig. 12 Thermal Performance Comparison of Different High-Heat-Flux Cooling Technologies......Page 116
Fig. 13 Scanning Electron Microscope Images of Various Nanostructures: (A) Silicon Nanopillars (Enright et al. 2012), (B) High-Aspect-Ratio Silicon Nanopillars (Enright et al. 2012), (C) Silicon Micropost-Pyramids with Silicon Nanograss on Surface (Chen et al. 2011), (D) CuO Nanoblades (Miljkovic et al. 2013), (E) Tobacco Mosaic Virus Template Nanostructure (McCarthy et al. 2012), (F) Zinc Oxide Nanowires (Miljkovic et al. 2013), (G) Boehmitized Aluminum (Kim et al. 2013) and (H) Carbon Nanotubes (Enright et al. 2014)......Page 117
--- CHAPTER 6: MASS TRANSFER ---......Page 123
Table 1 Mass Diffusivities for Gases in Air*......Page 124
Fig. 4 Composite Wall for Example 4......Page 127
Fig. 1 Diffusion of Water Vapor Through Stagnant Air......Page 125
Fig. 3 Equimolar Counterdiffusion......Page 126
Fig. 6 Nomenclature for Convective Mass Transfer from Internal Surface Impermeable to Gas A......Page 128
Fig. 7 Water-Saturated Flat Plate in Flowing Airstream......Page 129
Fig. 11 Mass Transfer from Single Spheres......Page 130
Fig. 12 Sensible Heat Transfer j-Factors for Parallel Plate Exchanger......Page 131
Fig. 14 Air Washer Humidification Process on Psychrometric Chart......Page 133
Fig. 15 Graphical Solution for Air-State Path in Parallel-Flow Air Washer......Page 134
Fig. 17 Graphical Solution for Air-State Path in Dehumidifying Coil with Constant Refrigerant Temperature......Page 135
Fig. 1 Example of Feedback Control: Discharge Air Temperature Control......Page 138
Table 2 Some Standard Communication Protocols Applicable to BAS......Page 155
Table 1 Comparison of Fiber Optic Technology......Page 154
Fig. 4 Two-Position Control......Page 139
Fig. 6 Proportional plus Integral (PI) Control......Page 140
Fig. 7 Floating Control Showing Variations in Controlled Variable as Load Changes......Page 141
Fig. 10 Typical Flow Characteristics of Valves......Page 142
Fig. 12 Typical Multiblade Dampers......Page 143
Fig. 14 Inherent Curves for Partially Ducted and Louvered Dampers (RP-1157)......Page 144
Fig. 15 Inherent Curves for Ducted and Plenum-Mounted Dampers (RP-1157)......Page 145
Fig. 16 Dead-Band Thermostat......Page 149
Fig. 18 Retrofit of Existing Pneumatic Control with Electronic Sensors and Controllers......Page 150
Fig. 19 OSI Reference Model......Page 152
Fig. 20 Hierarchical Network for Three-Tier System Architecture......Page 153
Fig. 23 Response of Discharge Air Temperature to Step Change in Set Points at Various Integral Constants with Fixed Proportional Constant......Page 157
Table 1 Typical Sound Pressures and Sound Pressure Levels......Page 160
Table 2 Examples of Sound Power Outputs and Sound Power Levels......Page 161
Table 3 Combining Two Sound Levels......Page 162
Fig. 1 Curves Showing A- and C-Weighting Responses for Sound Level Meters......Page 164
Table 7 Guidelines for Determining Equipment Sound Levels in the Presence of Contaminating Background Sound......Page 165
Fig. 6 Frequencies at Which Various Types of Mechanical and Electrical Equipment Generally Control Sound Spectra......Page 174
Fig. 3 Contour for Determining Partition’s STC......Page 171
Fig. 4 Free-Field Equal Loudness Contours for Pure Tones ......Page 173
Fig. 7 NC (Noise Criteria) Curves and Sample Spectrum (Curve with Symbols)......Page 175
Fig. 9 Vibration Transmissibility T as Function of fd / fn......Page 176
Fig. 11 Two-Degrees-of-Freedom System......Page 177
Fig. 13 Transmissibility T as Function of fd/fn1 with k2/k1 = 10 and M2/M1 = 40......Page 178
--- CHAPTER 9: THERMAL COMFORT ---......Page 181
Table 3 Skin Heat Loss Equations......Page 185
Fig. 2 Constant Skin Heat Loss Line and Its Relationship to toh and ET*......Page 186
Table 5 Heart Rate and Oxygen Consumption at Different Activity Levels......Page 187
Table 7 Typical Insulation and Permeability Values for Western Clothing Ensembles......Page 188
Table 9 Garment Insulation Values......Page 189
Fig. 5 ASHRAE Summer and Winter Comfort Zones......Page 192
Fig. 8 Relative Performance of Office Work Performance versus Deviation from Optimal Comfort Temperature Tc......Page 194
Fig. 19 Effective Temperature ET* and Skin Wettedness w......Page 202
Fig. 22 Comparing Thermal Inertia of Fat, Bone, Moist Muscle, and Excised Skin to That of Leather and Water......Page 204
Fig. 1 Thermal Interaction of Human Body and Environment......Page 182
Fig. 3 Mean Value of Angle Factor Between Seated Person and Horizontal or Vertical Rectangle when Person Is Rotated Around Vertical Axis......Page 191
Fig. 7 Predicted Rate of Unsolicited Thermal Operating Complaints......Page 193
Fig. 10 Percentage of People Dissatisfied as Function of Mean Air Velocity......Page 195
Fig. 12 Percentage of Seated People Dissatisfied as Function of Air Temperature Difference Between Head and Ankles......Page 196
Fig. 13 Percentage of People Dissatisfied as Function of Floor Temperature......Page 197
Fig. 15 Air Temperatures and Mean Radiant Temperatures Necessary for Comfort (PMV = 0) of Sedentary Persons in Summer Clothing at 50% rh......Page 198
Fig. 16 Predicted Percentage of Dissatisfied (PPD) as Function of Predicted Mean Vote (PMV)......Page 199
Fig. 18 Effect of Thermal Environment on Discomfort......Page 201
Fig. 20 Recommended Heat Stress Exposure Limits for Heat Acclimatized Workers......Page 203
Fig. 23 Thermal Inertias of Excised, Bloodless, and Normal Living Skin......Page 205
Fig. 24 Recommended Temperature Set Points for HVAC with PEC Systems and Energy Savings from Extending HVAC Temperature Set Points......Page 206
Fig. 25 Schematic Design of Heat Stress and Heat Disorders......Page 207
Fig. 26 Acclimatization to Heat Resulting from Daily Exposure of Five Subjects to Extremely Hot Room......Page 208
--- CHAPTER 10: INDOOR ENVIRONMENTAL HEALTH ---......Page 214
3.6 Outdoor Air Ventilation and Health......Page 237
Table 1 Selected Illnesses Related to Exposure in Buildings......Page 215
Table 2 OSHA Permissible Exposure Limits (PELs) for Particlesa......Page 218
Table 3 Primary and Secondary Standards for Particle Pollution......Page 220
Table 4 Pathogens with Potential for Airborne Transmission......Page 223
Table 5 Comparison of Indoor Environment Standards and Guidelines......Page 225
Table 6 Selected SVOCs Found in Indoor Environments......Page 226
Table 7 Indoor Concentrations and Body Burden of Selected Semivolatile Organic Compounds......Page 227
Table 8 Inorganic Gas Comparative Criteria......Page 229
Fig. 3 Factors Affecting Acceptability of Building Vibration......Page 232
Fig. 7 Electromagnetic Spectrum......Page 234
Table 12 2015 Action Levels for Radon Concentration Indoors......Page 235
Fig. 1 Related Human Sensory, Physiological, and Health Responses for Prolonged Exposure......Page 230
Fig. 2 Isotherms for Comfort, Discomfort, Physiological Strain, Effective Temperature (ET*), and Heat Stroke Danger Threshold......Page 231
Fig. 5 Median Perception Thresholds to Horizontal (Solid Lines) and Vertical (Dashed Line) Vibrations......Page 233
Fig. 8 Maximum Permissible Levels of Radio Frequency Radiation for Human Exposure......Page 236
--- CHAPTER 11: AIR CONTAMINANTS ---......Page 244
Fig. 3 Sizes of Indoor Particles......Page 247
Table 3 Common Molds on Water-Damaged Building Materials......Page 250
Table 4 Example Case of Airborne Fungi in Building and Outdoor Air......Page 251
Table 5 Major Chemical Families of Gaseous Air Contaminants......Page 252
Table 6 Characteristics of Selected Gaseous Air Contaminants......Page 254
Table 7 Gaseous Contaminant Sample Collection Techniques......Page 255
Table 8 Analytical Methods to Measure Gaseous Contaminant Concentration......Page 256
Table 9 Classification of Indoor Organic Contaminants by Volatility......Page 257
Table 10 VOCs Commonly Found in Buildings*......Page 258
Table 12 National Ambient Air Quality Standards for the United States......Page 260
Table 13 Sources and Indoor and Outdoor Concentrations of Selected Indoor Contaminants......Page 262
Table 14 Flammable Limits of Some Gases and Vapors......Page 263
Fig. 2 Relative Deposition Efficiencies of Different-Sized Particles in the Three Main Regions of the Human Respiratory System, Calculated for Moderate Activity Level......Page 246
Fig. 4 Typical Urban Outdoor Distributions of Ultrafine or Nuclei (n) Particles, Fine or Accumulation (a) Particles, and Coarse (c) Particles......Page 248
Table 1 Odor Thresholds, ACGIH TLVs, and TLV/Threshold Ratios of Selected Gaseous Air Pollutants......Page 269
Fig. 4 Matching Functions Obtained with Dravnieks Olfactometer......Page 272
Fig. 5 Percentage of Dissatisfied Persons as a Function of Ventilation Rate per Standard Person (i.e., per Olf)......Page 274
--- CHAPTER 13: INDOOR ENVIRONMENTAL MODELING ---......Page 277
Fig. 15 Schematic of Ventilation System and Envelope Leakage......Page 295
Fig. 19 Measured and Predicted Air Change Rates for Wind Speeds less than 2 m/s......Page 297
Fig. 1 (A) Grid Point Distribution and (B) Control Volume Around Grid Point P......Page 278
Fig. 3 Block-Structured Grid for Two-Dimensional Flow Simulation Through 90° Elbow Connected to Rectangular Duct......Page 280
Fig. 5 Circle Meshing......Page 281
Fig. 6 Boundary Condition Locations Around Diffuser Used in Box Method......Page 282
Fig. 9 Typical Velocity Distribution in Near-Wall Region......Page 283
Fig. 12 Duct with Symmetry Geometry......Page 284
Fig. 13 Airflow Path Diagram......Page 290
Fig. 14 Floor Plan of Living Area Level of Manufactured House......Page 294
Fig. 17 Multizone Representation of Ductwork in Belly and Crawlspace......Page 296
--- CHAPTER 14: CLIMATIC DESIGN INFORMATION ---......Page 300
Table 1 Design Conditions for Atlanta, GA, USA ......Page 303
Table 1A Nomenclature for Tables of Climatic Design Conditions......Page 304
Table 3 Time Zones in United States and Canada......Page 307
Table 4 Surface Orientations and Azimuths, Measured from South......Page 310
Table 6 Fraction of Daily Temperature Range......Page 311
Table 8 Derived Hourly Temperatures for Atlanta, GA for July for 5% Design Conditions, °C......Page 312
Table 9 Locations Representing Various Climate Types......Page 313
Fig. 1 Locations of Weather Stations......Page 301
Fig. 3 Solar Angles for Vertical and Horizontal Surfaces......Page 308
Fig. 4 Uncertainty versus Period Length for Various Dry-Bulb Temperatures, by Climate Type......Page 314
Fig. 5 Frequency and Duration of Episodes Exceeding Design Dry-Bulb Temperature for Indianapolis, IN......Page 315
Fig. 1 Construction Details of Typical Double-Glazing Unit......Page 348
Table 1 Representative Fenestration Frame U-Factors in W/(m2·K), Vertical Orientation......Page 353
Table 2 Indoor Surface Heat Transfer Coefficient hi in W/(m2·K), Vertical Orientation (Still Air Conditions)......Page 354
Table 3 Air Space Coefficients for Horizontal Heat Flow......Page 355
Table 4 U-Factors for Various Fenestration Products in W/(m2·K)i......Page 356
Fig. 4 Frame Widths for Standard Fenestration Units......Page 358
Fig. 5 Details of Stile-and-Rail Door......Page 360
Fig. 6 Optical Properties of a Single Glazing Layer......Page 361
Table 10 Visible Transmittance Tv, Solar Heat Gain Coefficient (SHGC), Solar Transmittance T , Front Reflectance Rf , Back Reflectance Rb , and Layer Absorptance A for Glazing and Window Systems......Page 369
Fig. 16 Generalized Tubular Daylighting Device......Page 377
Fig. 17 Transmittance of Straight Tube (Light Pipe) as Function of Reflectivity and Aspect Ratio (Length/Diameter)......Page 378
Table 13 Solar Heat Gain Coefficients for Standard Hollow Glass Block Wall Panels......Page 379
Table 14A IAC Values for Louvered Shades: Uncoated Single Glazings......Page 386
Table 14B IAC Values for Louvered Shades: Uncoated Double Glazings......Page 387
Table 14C IAC Values for Louvered Shades: Coated Double Glazings with 0.2 Low-e......Page 389
Table 14D IAC Values for Louvered Shades: Coated Double Glazings with 0.1 Low-e......Page 391
Table 14E IAC Values for Louvered Shades: Double Glazings with 0.05 Low-e......Page 393
Table 14F IAC Values for Louvered Shades: Triple Glazing......Page 395
Table 14G IAC Values for Draperies, Roller Shades, and Insect Screens......Page 397
Fig. 26 Noise Reduction Coefficient Versus Openness Factor for Draperies......Page 400
Table 16 Spectral Selectivity of Several Glazings......Page 404
Table 17 Sound Transmittance Loss for Various Types of Glass......Page 408
Fig. 2 Various Framing Configurations for Residential Fenestration......Page 350
Fig. 3 Center-of-Glass U-Factor for Vertical Double- and Triple-Pane Glazing Units......Page 352
Fig. 9 Normalized Solar Transmittance for Five Common Glass Substrates as Function of Incidence Angle in Degrees......Page 362
Fig. 12 Spectral Transmittances and Reflectances of Strongly Spectrally Selective Commercially Available Glazings......Page 363
Fig. 13 Solar Spectrum, Human Eye Response Spectrum, Scaled Blackbody Radiation Spectrum, and Idealized Glazing Reflectance Spectrum......Page 364
Fig. 14 Demonstration of Two Spectrally Selective Glazing Concepts, Showing Ideal Spectral Transmittances for Glazings Intended for Hot and Cold Climates......Page 365
Fig. 15 Components of Solar Radiant Heat Gain with Double-Pane Fenestration, Including Both Frame and Glazing Contributions......Page 367
Fig. 18 Instantaneous Heat Balance for Sunlit Glazing Material......Page 380
Fig. 20 Vertical and Horizontal Projections and Related Profile Angles for Vertical Surface Containing Fenestration......Page 381
Fig. 22 Geometry of Slat-Type Sunshades......Page 383
Fig. 25 Geometry of Drapery Fabrics......Page 384
Fig. 27 Window-to-Wall Ratio Versus Annual Electricity Use in kWh/(m2·floor·year)......Page 402
Fig. 29 Visible Transmittance Versus SHGC at Various Spectral Selectivities......Page 403
Fig. 30 Temperature Distribution on Indoor Surfaces of Glazing Unit......Page 405
Fig. 31 Minimum Indoor Surface Temperatures Before Condensation Occurs......Page 406
Fig. 34 Fenestration Effects on Thermal Comfort: Long-Wave Radiation, Solar Radiation, Convective Draft......Page 407
Figures......Page 416
Table 3 Total Ventilation Air Requirements......Page 437
Table 6 Basic Model Wind Coefficient Cw......Page 439
Table 9 Enhanced Model Shelter Factor s......Page 440
Fig. 13 Air Leakage Rates of Elevator Shaft Walls......Page 442
Fig. 2 Simple All-Air Air-Handling Unit with Associated Airflows......Page 417
Fig. 4 Entrainment Flow Within a Space......Page 418
Fig. 5 Underfloor Air Distribution to Occupied Space Above......Page 419
Fig. 7 Compartmentation Effect in Buildings......Page 425
Fig. 8 Increase in Airflow by Increasing Area of One Opening......Page 429
Fig. 9 Airflow Rate Versus Pressure Difference Data from Whole-House Pressurization Test......Page 430
Fig. 10 Envelope Leakage Measurements......Page 432
Fig. 12 Histogram of Infiltration Values for Low-Income Housing......Page 434
Fig. 16 Pressure Factor for Automatic Doors......Page 443
--- CHAPTER 17: RESIDENTIAL COOLING AND HEATING LOAD CALCULATIONS --- ......Page 455
Table 1 RLF Limitations......Page 457
Table 2 Typical Fenestration Characteristicsa......Page 459
Table 5 Typical IDF Values, L/(s·cm2)......Page 460
Table 8 Roof Solar Absorptance aroof ......Page 462
Table 10 Peak Irradiance, W/m2......Page 463
Table 14 Interior Attenuation Coefficients (IACcl)......Page 464
Table 15 Summary of RLF Cooling Load Equations......Page 465
Table 17 Example House Characteristics......Page 466
Fig. 1 Example House......Page 467
Table 23 Example House Total Sensible Loads......Page 468
--- CHAPTER 18: NONRESIDENTIAL COOLING AND HEATING LOAD CALCULATIONS --- ......Page 471
Table 1 Representative Rates at Which Heat and Moisture Are Given Off by Human Beings in Different States of Activity......Page 474
Table 2 Lighting Power Densities Using Space-by-Space Method......Page 475
Fig. 3 Lighting Heat Gain Parameters for Recessed Fluorescent Luminaire Without Lens......Page 476
Table 4B Minimum Average Full-Load Efficiency for Polyphase Small Electric Motors*......Page 477
Table 5A Recommended Rates of Radiant and Convective Heat Gain from Unhooded Electric Appliances During Idle (Ready-to-Cook) Conditions......Page 478
Table 5C Recommended Rates of Radiant Heat Gain from Hooded Electric Appliances During Idle (Ready-to-Cook) Conditions......Page 479
Table 5F Recommended Rates of Radiant and Convective Heat Gain from Warewashing Equipment during Idle (Standby) or Washing Conditions......Page 480
Table 7 Recommended Heat Gain from Typical Laboratory Equipment......Page 481
Table 8C Recommended Heat Gain for Typical Tablet PC......Page 482
Fig. 4 Office Equipment Load Factor Comparison......Page 483
Table 12 Diversity Factor for Different Equipment......Page 484
Table 13 Single-Layer Glazing Data Produced by WINDOW 7.4.6......Page 489
Table 14 Recommended Radiative/Convective Splits for Internal Heat Gains......Page 494
Table 15 Solar Absorptance Values of Various Surfaces......Page 495
Table 16 Wall Conduction Time Series (CTS)......Page 496
Table 17 Roof Conduction Time Series (CTS)......Page 503
Table 18 Thermal Properties and Code Numbers of Layers Used in Wall and Roof Descriptions for Tables 16 and 17......Page 507
Table 20 Representative Solar RTS Values for Light to Heavy Construction......Page 508
Fig. 14 Below-Grade Parameters......Page 509
Table 24 Heat Loss Coefficient Fp of Slab Floor Construction......Page 510
Table 25 Common Sizing Calculations in Other Chapters......Page 511
Table 26 Summary of RTS Load Calculation Procedures......Page 515
Table 27 Monthly/Hourly 5% Design Temperatures for Hartsfield-Jackson Atlanta International Airport, °C......Page 517
Table 28 Cooling Load Component: Lighting, W......Page 518
Table 29B Conduction: Wall Component of Sol-Air Temperatures, Heat Input, Heat Gain, Cooling Load (Month 7)......Page 520
Table 30 Window Component of Heat Gain (No Blinds or Overhang) (Month 7)......Page 521
Table 31 Window Component of Cooling Load (No Blinds or Overhang) (Month 7)......Page 522
Table 33 Window Component of Cooling Load (with Blinds and Overhang) (Month 7)......Page 523
Table 35 Single-Room Example Peak Cooling Load (Sept.5:00 PM) for ASHRAE Example Office Building, Atlanta, GA......Page 524
Table 36 Block Load Example: Envelope Area Summary, m2......Page 525
Table 38 Block Load Example—Second Floor Loads for ASHRAE Example Office Building, Atlanta, GA......Page 526
Table 39 Block Load Example—Overall Building Loads for ASHRAE Example Office Building, Atlanta, GA......Page 527
Fig. 2 Thermal Storage Effect in Cooling Load from Lights......Page 472
Fig. 6 Schematic of Wall Conduction Process......Page 487
Fig. 7 Schematic View of General Heat Balance Zone......Page 490
Fig. 11 RTS for Light to Heavy Construction......Page 493
Fig. 15 Schematic Diagram of Typical Return Air Plenum......Page 513
Fig. 16 Single-Room Example Office......Page 514
Fig. 17 First Floor Shell and Core Plan......Page 531
Fig. 18 Second Floor Shell and Core Plan......Page 532
Fig. 19 East/West Elevations, Elevation Details, and Perimeter Section......Page 533
Fig. 20 First Floor Tenant Plan......Page 534
Fig. 21 Second Floor Tenant Plan......Page 535
Fig. 22 3D View......Page 536
--- CHAPTER 19: ENERGY ESTIMATING AND MODELING METHODS ---......Page 537
Fig. 15 Backward Ray-Tracing Method......Page 563
Fig. 18 Neural Network Prediction of Whole-Building, Hourly Chilled-Water Consumption for Commercial Building......Page 570
Fig. 4 Heat Pump Capacity and Building Load......Page 544
Table 2 Calculation of Annual Heating Energy Consumption for Example 2 ......Page 545
Fig. 5 Possible Part-Load Power Curves......Page 552
Table 4 Single-Variate Models Applied to Utility Billing Data......Page 564
Table 5 Capabilities of Different Forward and Data-Driven Modeling Methods......Page 571
Table 6 Calibration Methods and Techniques......Page 572
Table 7 ANSI/ASHRAE Standard 140 Validation Test Matrix......Page 573
Table 8 Validation Techniques......Page 574
Fig. 19 Validation Method......Page 576
Fig. 1 Overall Modeling Strategy......Page 538
Fig. 3 Uncounted Ventilation Degree-Hours versus Counted Cooling Degree-Hours......Page 543
Fig. 7 Fan Part-Load Curve Obtained from Measured Field Data under ASHRAE RP-823......Page 554
Fig. 8 Psychrometric Schematic of Cooling Coil Processes......Page 556
Fig. 10 Example Boiler Model: Efficiency as Function of Part-Load Ratio and Entering Water Temperature......Page 558
Fig. 12 Algorithm for Calculating Performance of VAV with System Reheat......Page 560
Fig. 13 Split-Flux Method......Page 562
Fig. 16 Steady-State, Single-Variate Models for Modeling Energy Use in Residential and Commercial Buildings......Page 565
Fig. 20 Calibration Cases Conceptual Flow......Page 578
Fig. 1 Classification of Air Diffusion Methods......Page 590
Fig. 12 Zones of Expansion for Linear Air Jets......Page 594
Fig. 5 Example Airflow Patterns (Nonisothermal) of Outlet Group B......Page 592
Fig. 10 Example Airflow Patterns (Nonisothermal) of Outlet Group E (Low Velocity)......Page 593
Fig. 13 Cross-Sectional Velocity Profiles for Straight-Flow Turbulent Jets......Page 595
Fig. 15 Schematic Diagram of Major Flow Elements in Room with Displacement Ventilation......Page 597
--- CHAPTER 21: DUCT DESIGN --- ......Page 600
Fig. 9 Diffuser Installation Suggestions......Page 606
Table 4 Equivalent Flat Oval Duct Dimensions*......Page 609
Fig. 12 VAV Box Loss Coefficient Plot......Page 610
Fig. 13 Deficient System Performance with System Effect Ignored......Page 611
Fig. 18 Duct Layout for Example 7......Page 615
Table 9 Maximum Airflow of Round, Flat Oval and Rectangular Ducts as Function of Available Ceiling Space*......Page 618
Table 10 Options for Selecting 90° Takeoff......Page 620
Table 12 Recommended Maximum Airflow Velocities to Achieve Specified Acoustic Design Criteria*......Page 621
Fig. 27 Air Density for Example 8......Page 622
Table 14 Example 8, Equal Friction Design......Page 624
Table 15 Example 8, Static Regain Design......Page 625
Fig. 29 EF Design: Sizing Sections 4, 6, and 8 Knowing Design Friction Rate (Section 4 Shown)......Page 627
Table 20 Loss Coefficient Summary by Sections for Example 9......Page 629
Fig. 1 Thermal Gravity Effect for Example 1......Page 601
Fig. 4 Illustrative 6-Path, 9-Section System......Page 602
Fig. 5 Single Stack with Fan for Examples 3 and 4......Page 603
Fig. 7 Pressure Changes During Flow in Ducts......Page 604
Fig. 8 Pressure Loss Correction Factor for Flexible Duct Not Fully Extended......Page 605
Fig. 10 Friction Chart for Round Duct (p = 1.20 kg/m3 and e = 0.09 mm)......Page 608
Fig. 16 Fitting ED7-2 (Fan Inlet, Centrifugal Fan, SISW, with 4-Gore Elbow)......Page 612
Fig. 17 Comparison of Various Mechanical Equipment Room Locations......Page 614
Fig. 19 Criteria for Louver Sizing......Page 616
Fig. 21 Maximum Airflow of Round, Flat Oval, and Rectangular Ducts as Function of Available Ceiling Space......Page 617
Fig. 24 Guidelines for Centrifugal Fan Installations......Page 619
Fig. 25 Economizer Duct System Shown......Page 623
Fig. 31 System Schematic with Section Numbers for Example 9......Page 628
Fig. 32 Total Pressure Grade Line for Example 9......Page 630
--- CHAPTER 22: PIPE DESIGN --- ......Page 632
Table 1 Common Applications of Pipe, Fittings, and Valves for Heating and Air Conditioning......Page 633
Table 2 Manufacturers’ Recommendationsa,b for Plastic Materials......Page 636
Table 4 K Factors: Flanged Welded Steel Pipe Fittings......Page 637
Table 6 Summary of K Values for Steel Ells, Reducers, and Expansions......Page 638
Fig. 1 Close-Coupled Test Configurations......Page 639
Fig. 3 Summary Plot of Effect of Close-Coupled Configurations for 100 mm Ells......Page 640
Table 11 Suggested Hanger Spacing and Rod Size for Straight Horizontal Runs......Page 642
Fig. 4 Guided Cantilever Beam......Page 643
Fig. 5 Z Bend in Pipe......Page 644
Fig. 6 Multiplane Pipe System......Page 645
Table 15 Allowable Stressesa for Pipe and Tube......Page 646
Table 16 Steel Pipe Data......Page 647
Table 17 Copper Tube Data......Page 648
Table 18 Properties of Pipe Materialsa......Page 649
Table 20 Internal Working Pressure for Copper Tube Joints......Page 650
Table 23 Maximum Water Velocity to Minimize Erosion......Page 653
Fig. 10 Estimate Curves for Demand Load......Page 655
Fig. 16 Friction Loss for Water in Plastic Pipe (Schedule 80)......Page 658
Fig. 17 Elbow Equivalents of Tees at Various Flow Conditions......Page 659
Table 30 Comparative Capacity of Steam Lines at Various Pitches for Steam and Condensate Flowing in Opposite Directions......Page 660
Table 32 Flow Rate of Steam in Schedule 40 Pipe......Page 661
Table 34 Return Main and Riser Capacities for Low-Pressure Systems, g/s......Page 663
Table 36 Vented Wet Condensate Return for Gravity Flow Based on Darcy-Weisbach Equation......Page 665
Fig. 21 Working Chart for Determining Percentage of Flash Steam (Quality)......Page 666
Fig. 22 Typical Oil Circulating Loop......Page 667
Table 42 Recommended Nominal Size for Fuel Oil Suction Lines from Tank to Pump (Distillate Grades No. 1 and No. 2)......Page 668
Fig. 8 Flexible Ball Joint......Page 652
Fig. 13 Variation of Pressure Loss with Flow Rate for Various Faucets and Cocks......Page 656
Fig. 14 Friction Loss for Water in Commercial Steel Pipe (Schedule 40)......Page 657
Fig. 18 Flow Rate and Velocity of Steam in Schedule 40 Pipe at Saturation Pressure of 101 kPa......Page 662
Fig. 20 Types of Condensate Return Systems......Page 664
Fig. 1 Determination of Economic Thickness of Insulation......Page 671
Table 2 Minimum Pipe Insulation Thickness,a mm......Page 672
Fig. 2 Relative Humidity Histogram for Charlotte, NC......Page 673
Fig. 3 ASHRAE Psychrometric Chart No. 1......Page 674
Fig. 4 Time to Freeze Nomenclature......Page 675
Table 7 Insertion Loss for Pipe Insulation Materials, dB......Page 677
Table 9 Thermal Conductivities of Cylindrical Pipe Insulation at 12.8 and 24°C......Page 680
Table 11 Minimum Saddle Lengths for Use with 32 kg/m3 Polyisocyanurate Foam Insulation (13 to 75 mm thick)......Page 683
Table 12 Emittance Data of Commonly Used Materials......Page 689
Table 16 Inner and Outer Diameters of Standard Flexible Closed-Cell Tubing Insulation......Page 690
Table 18 Heat Loss from Bare Copper Tube to Still Air at 27°C, W/m......Page 691
Fig. 5 Insertion Loss Versus Mass of Jacket......Page 676
Fig. 6 Insulating Pipe Hangers......Page 684
Fig. 8 R-Value Required to Prevent Condensation on Surface with Emittance e = 0.9......Page 687
Fig. 1 Wind Flow Pattern Around High-Rise Building Slab......Page 693
Fig. 7 Flow Regimes Associated with Airflow over Building Arrays of Increasing H/W......Page 696
Fig. 14 Frequency Distribution of Wind Speed and Direction......Page 699
Fig. 3 Surface Flow Patterns for Normal and Oblique Winds......Page 694
Fig. 6 Amplification Factor K in Horizontal Plane at y = 2 m above Ground for Converging and Diverging Arrangement with H = 30 m and w = 75 m and 20 m......Page 695
Fig. 8 Local Pressure Coefficients (Cp x 100) for High-Rise Building with Varying Wind Direction......Page 697
Fig. 13 Local Roof Pressure Coefficients for Roof of Low-Rise Buildings......Page 698
Fig. 15 Sensitivity of System Volume to Locations of Building Openings, Intakes, and Exhausts......Page 700
Fig. 17 Effect of Wind-Assisted and Wind-Opposed Flow......Page 701
Fig. 18 Flow Patterns Around Rectangular Block Building......Page 703
--- CHAPTER 25: HEAT, AIR, AND MOISTURE CONTROL IN BUILDING ASSEMBLIES—FUNDAMENTALS --- ......Page 711
Fig. 1 Hygrothermal Loads and Alternating Diurnal or Seasonal Directions Acting on Building Envelope......Page 712
Fig. 2 Solar Vapor Drive and Interstitial Condensation......Page 713
Fig. 4 Measured Reduction in Catch Ratio Close to Façade of One-Story Building at Height of 2 m......Page 714
Fig. 5 Heat Flux by Thermal Radiation and Combined Convection and Conduction Across Vertical orHorizontal Air Layer......Page 717
Fig. 6 Examples of Airflow Patterns......Page 719
Fig. 7 Sorption Isotherms for Porous Building Materials......Page 720
Fig. 8 Sorption Isotherm and Suction Curve for Autoclaved Aerated Concrete (AAC)......Page 721
Fig. 9 Capillary Rise in Hydrophilic Materials......Page 722
Fig. 10 Moisture Fluxes by Vapor Diffusion and Liquid Flow in Single Capillary of Exterior Wall under Winter Conditions......Page 723
--- CHAPTER 26: HEAT, AIR, AND MOISTURE CONTROL IN BUILDING ASSEMBLIES—MATERIAL PROPERTIES --- ......Page 729
Table 1 Building and Insulating Materials: Design Valuesa......Page 736
Fig. 5 Sorption/Desorption Isotherms, Cement Board......Page 741
Table 3 Thermal Resistances of Plane Air Spaces,a,b,c (m2·K)/W......Page 742
Fig. 6 Trends of Apparent Thermal Conductivity of Moist Soils......Page 744
Table 5 Typical Water Vapor Permeance and Permeability for Common Building Materialsa......Page 745
Table 6 Water Vapor Permeance at Various Relative Humidities and Capillary Water Absorption Coefficient......Page 746
Table 7 Sorption/Desorption Isotherms of Building Materials at Various Relative Humidities......Page 748
Table 11 European Surface Film Coefficients/Resistances......Page 749
Fig. 2 Variation of Apparent Thermal Conductivity with Fiber Diameter and Density......Page 730
Fig. 3 Working Principle of Capillary-Active Interior Insulation......Page 732
--- CHAPTER 27: HEAT, AIR , AND MOISTURE CONTROL IN BUILDING ASSEMBLIES—EXAMPLES ---......Page 752
Fig. 2 Roof Assembly (Example 2)......Page 753
Fig. 3 (A) Wall Assembly for Example 3, with Equivalent Electrical Circuits: (B) Parallel Path and (C) Isothermal Planes......Page 754
Fig. 4 Insulated Concrete Block Wall (Example 4)......Page 755
Fig. 5 Wall Section and Equivalent Electrical Circuit (Example 5)......Page 756
Fig. 7 Corner Composed of Homogeneous Material Showing Locations of Isotherms......Page 757
Fig. 9 Brick Veneer Shelf for Example 6......Page 758
Fig. 10 Dew-Point Calculation in Wood-Framed Wall (Example 8)......Page 760
Fig. 12 Drying Wet Sheathing, Summer (Example 9)......Page 762
--- CHAPTER 28: COMBUSTION AND FUELS --- ......Page 764
Table 2 Flammability Limits and Ignition Temperatures of Common Fuels in Fuel/Air Mixtures......Page 765
Table 3 Heating Values of Substances Occurring in Common Fuels......Page 766
Table 4 Propane/Air and Butane/Air Gas Mixtures......Page 769
Table 8 Typical Compounds and Concentrations Found in Syngas from Thermal Gasification......Page 770
Table 10 Typical Density and Higher Heating Value of Standard Grades of Fuel Oil......Page 772
Table 11 Classification of Coals by Ranka......Page 773
Table 12 Typical Ultimate Analyses for Coals......Page 774
Table 14 Theoretical Air Requirements for Stoichiometric Combustion of Various Fuels......Page 775
Fig. 3 Water Vapor and Dew Point of Flue Gas......Page 776
Table 16 NOx Emission Factors for Combustion Sources......Page 780
Fig. 1 Altitude Effects on Gas Combustion Appliances......Page 767
Fig. 2 Approximate Viscosity of Fuel Oils......Page 771
Fig. 5 Influence of Sulfur Oxides on Flue Gas Dew Point......Page 777
Fig. 6 Flue Gas Losses with Various Fuels......Page 779
Fig. 7 Feedback Loop Stability Model Defined by Baade (1978, 2004)......Page 783
--- CHAPTER 29: REFRIGERANTS --- ......Page 785
Table 1 Refrigerant Data and Safety Classifications......Page 786
Table 2 Data and Safety Classifications for Refrigerant Blends......Page 787
Table 3B Refrigerant Environmental Properties......Page 789
Table 4 Environmental Properties of Refrigerant Blends; based on Montreal Protocol Reporting ODP and IPCC AR4 and AR5 GWP100 of Components......Page 790
Table 5 Physical Properties of Selected Refrigerantsa......Page 791
Table 7 Electrical Properties of Refrigerant Vapors......Page 792
Table 8 Comparative Refrigerant Performance per Kilowatt of Refrigeration......Page 793
Table 9 Swelling of Elastomers in Liquid Refrigerants at Room Temperature, % Linear Swell......Page 794
--- CHAPTER 30: THERMOPHYSICAL PROPERTIES OF REFRIGERANTS --- ......Page 797
Fig. 1 Pressure-Enthalpy Diagram for Refrigerant 12......Page 798
Fig. 2 Pressure-Enthalpy Diagram for Refrigerant 22......Page 800
Fig. 3 Pressure-Enthalpy Diagram for Refrigerant 23......Page 802
Fig. 4 Pressure-Enthalpy Diagram for Refrigerant 32......Page 804
Fig. 5 Pressure-Enthalpy Diagram for Refrigerant 123......Page 806
Fig. 6 Pressure-Enthalpy Diagram for Refrigerant 124......Page 808
Fig. 7 Pressure-Enthalpy Diagram for Refrigerant 125......Page 810
Fig. 8 Pressure-Enthalpy Diagram for Refrigerant 134a......Page 812
Fig. 9 Pressure-Enthalpy Diagram for Refrigerant 143a......Page 816
Fig. 10 Pressure-Enthalpy Diagram for Refrigerant 152a......Page 818
Fig. 11 Pressure-Enthalpy Diagram for Refrigerant 245fa......Page 820
Fig. 12 Pressure-Enthalpy Diagram for Refrigerant R-1233zd(E)......Page 822
Fig. 13 Pressure-Enthalpy Diagram for Refrigerant 1234yf......Page 824
Fig. 14 Pressure-Enthalpy Diagram for Refrigerant 1234ze(E)......Page 826
Fig. 15 Pressure-Enthalpy Diagram for Refrigerant 404A......Page 828
Fig. 16 Pressure-Enthalpy Diagram for Refrigerant 407C......Page 830
Fig. 17 Pressure-Enthalpy Diagram for Refrigerant 410A......Page 832
Fig. 18 Pressure-Enthalpy Diagram for Refrigerant 507A......Page 834
Fig. 19 Pressure-Enthalpy Diagram for Refrigerant 717 (Ammonia)......Page 836
Fig. 20 Pressure-Enthalpy Diagram for Refrigerant 718 (Water/Steam)......Page 838
Fig. 21 Pressure-Enthalpy Diagram for Refrigerant 744 (Carbon Dioxide)......Page 840
Fig. 22 Pressure-Enthalpy Diagram for Refrigerant 50 (Methane)......Page 842
Fig. 23 Pressure-Enthalpy Diagram for Refrigerant 170 (Ethane)......Page 844
Fig. 24 Pressure-Enthalpy Diagram for Refrigerant 290 (Propane)......Page 846
Fig. 25 Pressure-Enthalpy Diagram for Refrigerant 600 (n-Butane)......Page 848
Fig. 26 Pressure-Enthalpy Diagram for Refrigerant 600a (Isobutane)......Page 850
Fig. 27 Pressure-Enthalpy Diagram for Refrigerant 1150 (Ethylene)......Page 852
Fig. 28 Pressure-Enthalpy Diagram for Refrigerant 1270 (Propylene)......Page 854
Fig. 29 Pressure-Enthalpy Diagram for Refrigerant 704 (Helium)......Page 856
Fig. 30 Pressure-Enthalpy Diagram for Refrigerant 728 (Nitrogen)......Page 858
Fig. 31 Pressure-Enthalpy Diagram for Refrigerant 729 (Air)......Page 860
Fig. 32 Pressure-Enthalpy Diagram for Refrigerant 732 (Oxygen)......Page 862
Fig. 33 Pressure-Enthalpy Diagram for Refrigerant 740 (Argon)......Page 864
Fig. 34 Enthalpy-Concentration Diagram for Ammonia/Water Solutions......Page 866
Fig. 35 Equilibrium Chart for Aqueous Lithium Bromide Solutions......Page 869
Fig. 38 Viscosity of Aqueous Solutions of Lithium Bromide......Page 870
Table 1 Properties of Pure Calcium Chloride* Brines......Page 875
Fig. 6 Density of Sodium Chloride Brines......Page 877
Fig. 11 Thermal Conductivity of Aqueous Solutions of Industrially Inhibited Ethylene Glycol (vol. %)......Page 879
Table 5 Freezing and Boiling Points of Aqueous Solutions of Propylene Glycol......Page 880
Table 7 Specific Heat of Aqueous Solutions of Ethylene Glycol......Page 881
Table 9 Viscosity of Aqueous Solutions of Ethylene Glycol......Page 882
Table 11 Specific Heat of Aqueous Solutions of Propylene Glycol......Page 883
Table 13 Viscosity of Aqueous Solutions of Propylene Glycol......Page 884
Table 16 Physical Properties of d-Limonene......Page 887
Fig. 4 Thermal Conductivity of Calcium Chloride Brines......Page 876
Fig. 8 Thermal Conductivity of Sodium Chloride Brines......Page 878
Fig. 16 Viscosity of Aqueous Solutions of Industrially Inhibited Propylene Glycol (vol.%)......Page 885
--- CHAPTER 32: SORBENTS AND DESICCANTS --- ......Page 888
Fig. 3 Desiccant Cycle......Page 889
Fig. 5 Surface Vapor Pressure of Water/Lithium Chloride Solutions......Page 890
Fig. 6 Adsorption and Structural Characteristics of Some Experimental Silica Gels......Page 891
Fig. 7 Sorption Isotherms of Various Desiccants......Page 892
Table 1 Properties of Vapor......Page 894
Table 2 Properties of Liquids......Page 895
Table 3 Properties of Solids......Page 896
--- CHAPTER 34 : ENERGY RESOURCES --- ......Page 898
Fig. 2 World Primary Energy Production by Resource: 2004 Versus 2014......Page 901
Fig. 5 World Recoverable Coal Reserves: 2015......Page 902
Fig. 11 World Electricity Generation 2014......Page 903
Fig. 14 Per Capita United States Energy Consumption......Page 904
Fig. 17 Projected Total U.S. Energy Consumption by Resource......Page 905
--- CHAPTER 35 : SUSTAINABILITY --- ......Page 907
Table 1 Example Benchmark and Energy Targets for University Research Laboratory......Page 915
Fig. 1 Cooling Tower Noise Barrier......Page 910
Fig. 2 Effect of Montreal Protocol on Global Chlorofluorocarbon (CFC) Production......Page 911
Fig. 3 Electricity Generation by Fuel, 1980–2030......Page 913
--- CHAPTER 36 : MOISTURE MANAGEMENT IN BUILDINGS --- ......Page 919
Table 3 Vapor Released by Fuel Burning......Page 923
Table 7 Vapor Release Rates by Percentile......Page 924
Fig. 7 Daytime Rooms in Dwellings......Page 925
Fig. 11 Indoor/Outdoor Vapor Pressure Differences for 10 German Living Rooms......Page 926
Fig. 17 Weekly Mean Indoor/Outdoor Vapor Pressure Differences in Four Student Residences......Page 928
Fig. 1 Dynamic Interaction Between Air, Moisture, and Materials in HVAC Systems and Building Envelope......Page 920
Fig. 5 Annual Monthly Averaged Indoor/Outdoor Vapor Pressure Difference in Bedroom of Figure 3......Page 922
Fig. 14 Indoor/Outdoor Vapor Pressure Difference with Intersect at 0°C for 71 Rhode Island Homes......Page 927
Fig. 18 Sedlbauer’s Isopleth System for Class I Substrates: Time Until Germination......Page 929
--- CHAPTER 37 : MEASUREMENT AND INSTRUMEN --- ......Page 933
Table 1 Common Temperature Measurement Techniques......Page 936
Table 2 Thermocouple Tolerances on Initial Values of Electromotive Force Versus Temperature......Page 940
Table 3 Humidity Sensor Properties......Page 942
Table 4 Air Velocity Measurement......Page 948
Table 5 Volumetric or Mass Flow Rate Measurement......Page 953
Fig. 1 Measurement and Instrument Terminology......Page 934
Fig. 2 Errors in Measurement of Variable X......Page 935
Fig. 3 Typical Resistance Thermometer Circuit......Page 938
Fig. 5 Basic Thermistor Circuit......Page 939
Fig. 6 Standard Pitot Tube......Page 949
Fig. 7 Pitot-Static Probe Pressure Coefficient Yaw Angular Dependence......Page 950
Fig. 8 Measuring Points for Rectangular and Round Duct Traverse......Page 951
Fig. 10 Dimensions of ASME Long-Radius Flow Nozzles......Page 954
Fig. 12 Variable-Area Flowmeter......Page 955
Fig. 13 Nondispersive Infrared Carbon Dioxide Sensor......Page 957
Fig. 16 Closed-Cell Photoacoustic Carbon Dioxide Sensor......Page 958
Fig. 22 Wattmeter in Single-Phase Circuit Measuring Power Load plus Loss in Potential-Coil Circuit......Page 959
Fig. 27 Three-Wire, Three-Phase Power-Factor Meter......Page 960
Fig. 28 Madsen’s Comfort Meter......Page 964
Fig. 29 Adsorption Isotherm and Desorption Isotherm for Hygroscopic Material......Page 965
--- CHAPTER 38 : ABBREVIATIONS AND SYMBOLS --- ......Page 973
Table 1 Abbreviations for Text, Drawings, and Computer Programs......Page 974
Fig. 1 Visibility of Pipe Markings......Page 982
Table 4 Size of Legend Letters......Page 983
Table 1 Conversions to I-P and SI Units......Page 984
Table 2 Conversion Factors......Page 985
Selected Codes and Standards Published by Various Societies and Associations......Page 986
ORGANIZATIONS......Page 1013


First 10 Pages Of the book


Comments Of The Book