sign in

Username Password

Forget Password ? ? Click Here

Don't Have An Account ? Create One

sign up

name Username Email Mobile Password

To contact us, you can contact us via the following mobile numbers by calling and WhatsApp


+989115682731 Connect To WhatsApp
+989917784643 Connect To WhatsApp
EnglishEnglish SpanishSpanish PortuguesePortuguese FrenchFrench GermanGerman ChineseChinese

Unlimited Access

For Registered Users

Secure Payment

100% Secure Payment

Easy Returns

10 Days Returns

24/7 Support

Call Us Anytime

Introduction to Radar Using Python and MATLAB 2019 book

Introduction to Radar Using Python and MATLAB

Details Of The Book

Introduction to Radar Using Python and MATLAB

edition:  
Authors:   
serie:  
ISBN : 9781630815974 
publisher: Artech House 
publish year: 2019 
pages: 491 
language: English 
ebook format : PDF (It will be converted to PDF, EPUB OR AZW3 if requested by the user) 
file size: 51 MB 

price : $10.27 13 With 21% OFF



Your Rating For This Book (Minimum 1 And Maximum 5):

User Ratings For This Book:       


You can Download Introduction to Radar Using Python and MATLAB Book After Make Payment, According to the customer's request, this book can be converted into PDF, EPUB, AZW3 and DJVU formats.


Abstract Of The Book



Table Of Contents

Introduction to Radar Using
Python and MATLAB
	Contents
	Preface
	Chapter 1
Introduction
		1.1 HISTORY OF RADAR
		1.2 RADAR CLASSIFICATION
			1.2.1 Frequency Band
			1.2.2 Waveform
			1.2.3 Application
			1.2.4 Configuration
		1.3 ACCOMPANYING SOFTWARE
			1.3.1 Python
			1.3.2 MATLAB
		PROBLEMS
		References
	Chapter 2
Electromagnetic Fields andWaves
		2.1 MAXWELL’S EQUATIONS
		2.2 TIME HARMONIC ELECTROMAGNETICS
		2.3 ELECTROMAGNETIC BOUNDARY CONDITIONS
			2.3.1 General Material Interface
			2.3.2 Dielectric Interface
			2.3.3 Perfect Electric Conductor Interface
			2.3.4 Perfect Magnetic Conductor Interface
			2.3.5 Radiation Condition
		2.4 WAVE EQUATIONS AND SOLUTIONS
			2.4.1 Scalar and Vector Potentials
			2.4.2 Fields Due to Sources
			2.4.3 Source Free Fields
		2.5 PLANE WAVES
			2.5.1 Plane Waves in Lossless Media
			2.5.2 Plane Waves in Lossy Media
			2.5.3 Plane Waves in Low-Loss Dielectrics
			2.5.4 Plane Waves in Good Conductors
		2.6 PLANE WAVE REFLECTION AND TRANSMISSION
			2.6.1 Perpendicular Polarization
			2.6.2 Parallel Polarization
			2.6.3 Brewster Angle
			2.6.4 Critical Angle
		2.7 TROPOSPHERIC REFRACTION
			2.7.1 Apparent Elevation
			2.7.2 Apparent Range
			2.7.3 Beam Spreading
			2.7.4 Ducting
		2.8 EARTH DIFFRACTION
			2.8.1 Case 1: d  dlos
			2.8.2 Case 2: d < dlo
		2.9 PLANE WAVE ATTENUATION
			2.9.1 Atmospheric Attenuation
			2.9.2 Attenuation in Vegetation
			2.9.3 Rain Attenuation
			2.9.4 Cloud and Fog Attenuation
		2.10 EXAMPLES
			2.10.1 Plane Wave Propagation
			2.10.2 Reflection and Transmission
			2.10.3 Tropospheric Refraction
			2.10.4 Earth Diffraction
			2.10.5 Attenuation
		PROBLEMS
		References
	Chapter 3
Antenna Systems
		3.1 ANTENNA PARAMETERS
			3.1.1 Radiation Pattern
			3.1.2 Beamwidth
			3.1.3 Power Density
			3.1.4 Radiation Intensity
			3.1.5 Directivity
			3.1.6 Gain
			3.1.7 Bandwidth
			3.1.8 Polarization
		3.2 ANTENNA TYPES
			3.2.1 Linear Wire Antennas
			3.2.2 Loop Antennas
			3.2.3 Aperture Antennas
			3.2.4 Horn Antennas
			3.2.5 Antenna Arrays
		3.3 EXAMPLES
			3.3.1 Finite Length Dipole
			3.3.2 Circular Loop
			3.3.3 Rectangular Aperture
			3.3.4 Circular Aperture
			3.3.5 Pyramidal Horn
			3.3.6 Tschebyscheff Linear Array
			3.3.7 Planar Array
			3.3.8 Circular Array
		PROBLEMS
		References
	Chapter 4
The Radar Range Equation
		4.1 HERTZIAN DIPOLE
			4.1.1 Radiated Power
			4.1.2 Radiation Intensity
			4.1.3 Directivity and Gai
		4.2 BASIC RADAR RANGE EQUATION
			4.2.1 Maximum Detection Range
			4.2.2 Noise
			4.2.3 Losses
			4.2.4 Radar Reference Range and Loop Gain
		4.3 SEARCH RADAR RANGE EQUATION
		4.4 BISTATIC RADAR RANGE EQUATION
			4.4.1 Maximum Detection Range
		4.5 EXAMPLES
			4.5.1 Hertzian Dipole
			4.5.2 Basic Radar Range Equation
			4.5.3 Search Radar Range Equation
			4.5.4 Bistatic Radar Range Equation
		PROBLEMS
		References
	Chapter 5
Radar Receivers
		5.1 CONFIGURATIONS
		5.2 NOISE
		5.3 DYNAMIC RANGE
		5.4 BANDWIDTH
		5.5 GAIN CONTROL
		5.6 FILTERING
		5.7 DEMODULATION
			5.7.1 Noncoherent Detection
			5.7.2 Coherent Detection
		5.8 ANALOG-TO-DIGITAL CONVERSION
			5.8.1 Sampling
			5.8.2 Quantization
		5.9 DIGITAL RECEIVERS
			5.9.1 Direct Digital Downconversio
			5.9.2 Hilbert Transform
		5.10 EXAMPLES
			5.10.1 Sensitivity Time Control
			5.10.2 Noise Figure
			5.10.3 Receiver Filtering
			5.10.4 Noncoherent Detection
			5.10.5 Coherent Detection
			5.10.6 Analog-to-Digital Conversion
			5.10.7 Analog-to-Digital Resolution
		PROBLEMS
		References
	Chapter 6
Target Detection
		6.1 OPTIMAL DETECTION
			6.1.1 Neyman-Pearson Lemma
			6.1.2 Noncoherent Detection
			6.1.3 Coherent Detection
		6.2 PULSE INTEGRATION
			6.2.1 Coherent Integration
			6.2.2 Noncoherent Integration
			6.2.3 Binary Integration
			6.2.4 Cumulative Integration
		6.3 FLUCTUATING TARGET DETECTION
			6.3.1 Swerling 0
			6.3.2 Swerling I
			6.3.3 Swerling II
			6.3.4 Swerling III
			6.3.5 Swerling IV
			6.3.6 Shnidman’s Equation
		6.4 CONSTANT FALSE ALARM RATE
			6.4.1 Cell Averaging CFAR
			6.4.2 Cell Averaging Greatest of CFAR
			6.4.3 Censored Greatest of CFAR
			6.4.4 Cell Averaging Smallest of CFAR
			6.4.5 Ordered Statistic CFAR
			6.4.6 Cell Averaging Statistic Hofele CFAR
		6.5 EXAMPLES
			6.5.1 Probability Distributions
			6.5.2 Detection Probability with Gaussian Noise
			6.5.3 Detection Probability with Rayleigh Noise
			6.5.4 Single Pulse signal-to-noise
			6.5.5 Binary Integration
			6.5.6 Optimum Binary Integration
			6.5.7 Coherent Pulse Integration
			6.5.8 Noncoherent Pulse Integration
			6.5.9 Shnidman’s Approximation
			6.5.10 Constant False Alarm Rate
		PROBLEMS
		References
	Chapter 7
Radar Cross Section
		7.1 DEFINITION
			7.1.1 Angle Variation
			7.1.2 Frequency Variation
			7.1.3 Polarization Variation
		7.2 SCATTERING MATRIX
		7.3 SCATTERING MECHANISMS
		7.4 PREDICTION METHODS
			7.4.1 Analytical Techniques
			7.4.2 Numerical Techniques
			7.4.3 Measurement Techniques
		7.5 RADAR CROSS-SECTION REDUCTION
			7.5.1 Shaping
			7.5.2 Radar Absorbing Material
			7.5.3 Passive Cancellation
			7.5.4 Active Cancellation
			7.5.5 Electronic Countermeasures
		7.6 EXAMPLES
			7.6.1 Two-Dimensional Strip
			7.6.2 Two-Dimensional Cylinder
			7.6.3 Two-Dimensional Cylinder Oblique Incidence
			7.6.4 Rectangular Plate
			7.6.5 Stratified Sphere
			7.6.6 Circular Cone
			7.6.7 Rounded Nose Cone
			7.6.8 Frustum
			7.6.9 Physical Optics
			7.6.10 Finite Difference Time Domain Me
		PROBLEMS
		References
	Chapter 8
Pulse Compress
		8.1 RANGE RESOLUTION
		8.2 STEPPED FREQUENCY WAVEFORMS
		8.3 MATCHED FILTER
		8.4 STRETCH PROCESSING
		8.5 WINDOWING
		8.6 AMBIGUITY FUNCTION
			8.6.1 Single Unmodulated Pulse
			8.6.2 Single LFM Pulse
			8.6.3 GenericWaveform Procedure
		8.7 PHASE-CODED WAVEFORMS
			8.7.1 Barker Codes
			8.7.2 Frank Codes
			8.7.3 Pseudorandom Number Codes
		8.8 EXAMPLES
			8.8.1 Stepped FrequencyWaveform
			8.8.2 Matched Filter
			8.8.3 Stretch Processor
			8.8.4 Unmodulated Pulse Ambiguity
			8.8.5 LFM Pulse Ambiguity
			8.8.6 Coherent Pulse Train Ambiguity
			8.8.7 LFM Pulse Train Ambiguity
			8.8.8 Barker Code Ambiguity
			8.8.9 PRN Code Ambiguity
			8.8.10 Frank Code Ambiguity
		PROBLEMS
		References
	Chapter 9
Target Tracking
		9.1 TRACKING FILTERS
			9.1.1 Alpha-Beta Filter
			9.1.2 Alpha-Beta-Gamma Filter
			9.1.3 Kalman Filter
		9.2 MULTITARGET TRACKING
			9.2.1 Global Nearest Neighbor
			9.2.2 Joint Probabilistic Data Association
			9.2.3 Multiple Hypothesis Tracker
			9.2.4 Random Finite Set
		9.3 MEASUREMENT MODEL
		9.4 EXAMPLES
			9.4.1 Alpha-Beta Filter
			9.4.2 Alpha-Beta-Gamma Filter
			9.4.3 Kalman Filter: Constant Velocity
			9.4.4 Kalman Filter: Constant Acceleration
			9.4.5 Adaptive Kalman Filter: Epsilon Method
			9.4.6 Adaptive Kalman Filter: Sigma Method
		PROBLEMS
		References
	Chapter 10
Tomographic Synthetic Aperture Radar
		10.1 TOMOGRAPHY
			10.1.1 History
			10.1.2 Line Integrals and Projections
			10.1.3 SAR Imaging
			10.1.4 Three-Dimensional Tomography
		10.2 EXAMP
			10.2.1 Two-Dimensional
			10.2.2 Three-Dimensional
		PROBLEMS
		References
	Chapter 11
Countermeasures
		11.1 PASSIVE JAMMING
			11.1.1 Chaff
			11.1.2 Passive Deception
		11.2 ACTIVE JAMMING
			11.2.1 Continuous Noise
			11.2.2 Active Deception
		11.3 DIGITAL RADIO FREQUENCY MEMORY
		11.4 EXAMPLES
			11.4.1 Jammer to Signal: Self-Screening
			11.4.2 Jammer to Signal: Escort
			11.4.3 Crossover Range: Self-Screening
			11.4.4 Crossover Range: Escort
			11.4.5 Burn-Through Range: Self-Screening
			11.4.6 Burn-Through Range: Escort
			11.4.7 Moving Target Indication
		PROBLEMS
		References
	About the Author
	Index


First 10 Pages Of the book


Comments Of The Book