sign in

Username Password

Forget Password ? ? Click Here

Don't Have An Account ? Create One

sign up

name Username Email Mobile Password

To contact us, you can contact us via the following mobile numbers by calling and WhatsApp


+989115682731 Connect To WhatsApp
+989917784643 Connect To WhatsApp
EnglishEnglish SpanishSpanish PortuguesePortuguese FrenchFrench GermanGerman ChineseChinese

Unlimited Access

For Registered Users

Secure Payment

100% Secure Payment

Easy Returns

10 Days Returns

24/7 Support

Call Us Anytime

The many-worlds interpretation of quantum mechanics 1973 book

The many-worlds interpretation of quantum mechanics

Details Of The Book

The many-worlds interpretation of quantum mechanics

Category: quantum physics
edition: 1st 
Authors:   
serie: Princeton series in physics 
ISBN : 0691081263, 9780691081267 
publisher: Princeton University Press 
publish year: 1973 
pages: 260 
language: English 
ebook format : DJVU (It will be converted to PDF, EPUB OR AZW3 if requested by the user) 
file size: 2 MB 

price : $8.4 10 With 16% OFF



Your Rating For This Book (Minimum 1 And Maximum 5):

User Ratings For This Book:       


You can Download The many-worlds interpretation of quantum mechanics Book After Make Payment, According to the customer's request, this book can be converted into PDF, EPUB, AZW3 and DJVU formats.


Abstract Of The Book



Table Of Contents

THE MANY-WORLDS INTERPRETATION OF QUANTUM MECHANICS......Page 1
Princeton Series in Physics......Page 3
Title Page......Page 4
Copyright Page......Page 5
Preface......Page 6
Contents......Page 8
I. Introduction......Page 12
§1. Finite joint distributions......Page 22
§2. Information for finite distributions......Page 24
§3. Correlation for finite distributions......Page 26
§4. Generalization and further properties of correlation......Page 29
§5. Information for general distributions......Page 34
§6. Example: Information decay in stochastic processes......Page 37
§7. Example: Conservation of information in classical mechanics......Page 39
III. Quantum Mechanics......Page 42
§1. Composite systems......Page 44
§2. Information and correlation in quantum mechanics......Page 52
§3. Measurement......Page 62
§1. Formulation of the problem......Page 72
§2. Deductions......Page 75
§3. Several observers......Page 87
V. Supplementary Topics......Page 94
§1. Macroscopic objects and classical mechanics......Page 95
§2. Amplification processes......Page 99
§3. Reversibility and irreversibility......Page 103
§4. Approximate measurement......Page 109
§5. Discussion of a spin measurement example......Page 112
VI. Discussion......Page 118
§1. Proof of Theorem 1......Page 130
§2. Convex function inequalities......Page 131
§3. Refinement theorems......Page 133
§4. Monotone decrease of information for stochastic processes......Page 135
§5. Proof of special inequality for Chapter IV (1.7)......Page 137
§6. Stationary point of I K + I X......Page 138
Appendix II. Remarks on the Role of Theoretical Physics......Page 142
References......Page 148
2. Realm of Applicability of the Conventional or \"External Observation\" Formulation of Quantum Mechanics......Page 150
3. Quantum Mechanics Internal to an Isolated System......Page 151
4. Concept of Relative State......Page 152
5. Observation......Page 153
6. Discussion......Page 158
John A. Wheeler......Page 160
Quantum Theory of Measurement......Page 164
Is This Definition Adequate?......Page 165
Infinite Regression......Page 166
Change the Rules......Page 167
Historical Interpretations......Page 168
Absolute Chance......Page 169
Probability Interpretation......Page 170
Questions of Praticality......Page 172
Final Assessment......Page 173
References......Page 174
Introduction......Page 176
1. — System, apparatus and coupling......Page 178
2. — Relative states, infinite regression, absolute chance and schizophrenia......Page 185
3. — Unobservability of the splits......Page 188
4. — The statistical interpretation of quantum mechanics......Page 192
5. — Remaining questions......Page 195
6. — Action functional, dynamical equations and small disturbances......Page 199
7. — The Poisson bracket......Page 202
8. — Measurement of a single observable. Uncertainties and compensation devices......Page 204
9. — Two prototypical measurements......Page 210
10. — Measurement of two observables......Page 216
11. — Imperfect measurements......Page 219
Appendix B. Identities satisfied by the Green\'s functions......Page 225
Appendix C. The Poisson–Jacobi identity......Page 226
References......Page 227
Introduction......Page 228
1. Analysis of an Interference Pattern......Page 229
2. Measurement......Page 230
3. Cognition......Page 231
4. How Is Something Known?......Page 232
Conclusion......Page 236
1. Introduction......Page 238
2. The relative frequency operator......Page 248
3. Measurements with a macroscopic apparatus......Page 250
4. Some properties of macroscopic systems......Page 254
5. Summary and Conclusions......Page 259
References......Page 262




Comments Of The Book